[1] 徐君臣, 银建中. 纤维缠绕复合材料气瓶研究进展[J]. 应用科技, 2012, 39(4): 64-71.
[2] 常新龙, 张晓军, 刘新国, 等. 复合材料气瓶有限元分析与爆破压力预测[J]. 火箭推进, 2008(4): 27-31. [3] MAUS S, HAPKE J, RANONG C N, et al. Filling procedure for vehicles with compressed hydrogen tanks[J]. International Journal of Hydrogen Energy, 2008, 33(17): 4612-4621. [4] 徐彦龙. 缠绕复合气瓶的失效分析[D]. 武汉: 武汉工程大学, 2015. [5] 岳忠, 李晓辉, 张树. 基于ANSYS对车用全复合材料CNG气瓶的安全研究[J]. 中国安全科学学报, 2011, 21(3): 77-83. [6] 张广哲, 王和慧, 关凯书. 碳纤维缠绕储氢瓶的有限元自紧分析和爆破压力预测[J]. 压力容器, 2011, 28(8): 27-34, 43. [7] XU P, ZHENG J Y, LIU P F. Finite element analysis of burst pressure of composite hydrogen storage vessels[J]. Materials and Design, 2009, 30(7): 2295-2301. [8] LEH D, SAFFRÉP, FRANCESCATO P, et al. A progressive failure analysis of a 700-bar type Ⅳ hydrogen composite pressure vessel[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13206-13214. [9] CHAMIS C C, MINNETYAN L, GOTSIS P K. Progressive fracture and damage tolerance of composite pressure vessels[J]. Journal of advanced materials, 1998, 30(1). [10] 周丹, 王应军, 孙明清. 两种不同铝内衬碳纤维缠绕复合材料气瓶受力状况的对比分析[J]. 玻璃钢/复合材料, 2016(6): 76-80, 32. [11] WANG R G, JIAO W C, LIU W B, et al. Dome thickness prediction of composite pressure vessels by a cubic spline function and finite element analysis[J]. Polymers & Polymer Composites, 2011, 19(2/3). [12] 陈旦, 祖磊, 许家忠, 等. 干纱缠绕复合材料压力容器的结构设计与强度分析[J]. 玻璃钢/复合材料, 2019(2): 5-12, 44. [13] 李汝鹏, 陈磊, 刘学术, 等. 基于渐进损伤理论的复合材料开孔拉伸失效分析[J]. 航空材料学报, 2018, 38(5): 138-146. [14] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334. [15] 李伟占. 复合材料层合板损伤失效模拟分析[D]. 哈尔滨: 哈尔滨工程大学, 2012. [16] RAMIREZ J P B, HALM D, GRANDIDIER J C, et al. 700 bar type Ⅳ high pressure hydrogen storage vessel burst-simulation and experimental validation[J]. International Journal of Hydrogen Energy, 2015, 40(38). [17] WANG L, ZHENG C X, LUO H Y, et al. Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel[J]. Composite Structures, 2015, 134(1): 475-482. |