[1] MORI T, TANAKA K. Average stress in matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Metallurgica, 1973, 21(5): 571-574. [2] TANDON G P, WENG G J. A theory of particle-reinforced plasticity[J]. Journal of Applied Mechanics, 1988, 55(1): 126-135. [3] HILL R. A self-consistent mechanics of composite materials[J]. Journal of The Mechanics and Physics of Solids, 1965, 13(4): 213-222. [4] WENG G J. The overall elastoplastic stress-strain relations of dual-phase metals[J]. Journal of The Mechanics and Physics of Solids, 1990, 38(3): 419-441. [5] SUN L Z, JU J W. Effective elastoplastic behavior of metal matrix composites containing randomly located aligned spheroidal Inhomogeneities. Part Ⅱ: applications[J]. International Journal of Solids and Structures, 2001, 38(2): 203-225. [6] LAHELLEC N, SUQUETP. Effective response and field statistics in elasto-plastic and elasto-viscoplastic composites under radial and non-radial loadings[J]. International Journal of Plasticity, 2013, 42: 1-30. [7] 韩佳. 基于Mori-Tanaka方法的颗粒增强弹塑性基体复合材料力学特性研究[D]. 重庆: 重庆大学, 2014. [8] SHI C, TU Q, FAN H, et al. Interphase models for nanoparticle-polymer composites[J]. Journal of Nanomechanics and Micromechanics, 2016, 6(2): 04016003. [9] 周志伟, 陈美霞. 多层次等效的Mori-Tanaka法预测含空腔点阵增强芯层的等效弹性模量[J]. 复合材料学报, 2018, 35(12): 3517-3525. [10] ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, 1957, 241(1226): 376-396. [11] CHATZIGEORGIOU G, MERAGHNI F. Elastic and inelastic local strain fields in composites with coated fibers or particles: Theory and validation[J]. Mathematics and Mechanics of Solids, 2019, 24(9): 2858-2894. [12] MEHDIPOUR H, CAMANHO P P, BELINGARDI G. Elasto-plastic constitutive equations for short fiber reinforced polymers[J]. Composites Part B-engineering, 2019, 165: 199-214. [13] MORTAZAVI B, BANIASSADI M, BARDON J, et al. Modeling of two-phase random composite materials by finite element, Mori-Tanaka and strong contrast methods[J]. Composites Part B-engineering, 2013, 45(1): 1117-1125. [14] HUA Y, GU L. Prediction of the thermomechanical behavior of particle-reinforced metal matrix composites[J]. Composites Part B-engineering, 2013, 45(1): 1464-1470. [15] MOUMEN A E, KANIT T, IMAD A, et al. Effect of reinforcement shape on physical properties and representative volume element of particles-reinforced composites: Statistical and numerical approaches[J]. Mechanics of Materials, 2015, 83: 1-16. [16] 许杨剑, 武鹏伟, 赵帅, 等. 弹塑性多尺度分析的实现及其在颗粒增强复合材料中的应用[J]. 复合材料学报, 2017, 34(9): 1934-1943. [17] SU Y, OUYANG Q, ZHANG W, et al. Composite structure modeling and mechanical behavior of particle reinforced metal matrix composites[J]. Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 2014, 597: 359-369. [18] HUANG S J, HWANG Y, HUANG Y S, et al. Mechanical properties enhancement of particle reinforced magnesium matrix composites used for hot extruded tubes[J]. Acta Physica Polonica A, 2015, 127(4): 1271-1273. [19] ALMOSAWI B T S, WEXLER D, CALKA A. Characterization and mechanical properties of α-Al2O3 particle reinforced aluminium matrix composites, synthesized via uniball magneto-milling and uniaxial hot pressing[J]. Advanced Powder Technology, 2017, 28(3): 1054-1064. [20] WANG Z, GEORGARAKIS K, NAKAYAMA K S, et al. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites[J]. Scientific Reports, 2016, 6(1): 82-90. [21] LI J, CHEN X, HUANG F. On the mechanical properties of particle reinforced metallic glass matrix composites[J]. Journal of Alloys and Compounds, 2018, 737: 271-294. [22] LI J, CHEN X, HUANG F. FEM analysis on the deformation and failure of fiber reinforced metallic glass matrix composite[J]. Materials Science and Engineering A-structural Materials Properties Microstructure and Processing, 2016, 652: 145-166. [23] ZHANG X, GAO H, ZHANG X, et al. Effect of volume fraction of bainite on microstructure and mechanical properties of X80 pipeline steel with excellent deformability[J]. Materials Science and Engineering: A, 2012, 531: 84-90. [24] 王行, 谢敬佩, 郝世明, 等. 碳化硅颗粒增强铝基复合材料研究现状与展望[J]. 稀有金属与硬质合金, 2013, 41(3): 50-53, 64. [25] JU J W, CHEN T M. Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities[J]. Acta Mechanica, 1994, 103(1): 123-144. [26] HU G. A method of plasticity for general aligned spheroidal void or fiber-reinforced composites[J]. International Journal of Plasticity, 1996, 12(4): 439-449. [27] 潘小东. 含纳米孔洞或夹杂的非均匀材料弹塑性力学性能[D]. 保定: 河北大学, 2019. [28] WALPOLE L J. Elastic behavior of composite materials: Theoretical foundations[J]. Advances in Applied Mechanics, 1981, 21: 169-242. [29] 马连华. 含流体多孔材料细观力学与多场耦合力学[D]. 北京: 北京工业大学, 2012. [30] QIU Y P, WENG G J. A Theory of plasticity for porous materials and particle-reinforced composites[J]. Journal of Applied Mechanics, 1992, 59(2): 261-268. [31] ZHANG W, XU Z, WANG T, et al. Effect of inner gas pressure on the elastoplastic behavior of porous materials: A second-order moment micromechanics model[J]. International Journal of Plasticity, 2009, 25(7): 1231-1252. [32] SMITH J C. Experimental values for the elastic constants of a particulate-filled glassy polymer[J]. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 1976, 80(1): 45-49. [33] ARSENAULT R J. The strengthening of aluminum alloy 6061 by fiber and platelet silicon carbide[J]. Materials Science and Engineering, 1984, 64(2): 171-181. [34] NIEH T G, CHELLMAN D J. Modulus measurements in discontinuous reinforced aluminum composites[J]. Scripta Metallurgica, 1984, 18(9): 925-928. |