[1] 王欣,薛亚鹏, 王晶,等. 大型风机叶片新材料和新技术的发展[J]. 玻璃钢复合材料, 2011, (3): 55-59. [2] 卢敏, 唐先贺, 冯学斌,等.盐雾老化对风电叶片用环氧树脂性能的影响[J]. 玻璃钢/复合材料, 2012, (1): 44-47. [3] 刘博, 黄争鸣. 复合材料风机叶片结构分析与铺层优化[J]. 玻璃钢复合材料, 2012, (1): 3-7. [4] HOCHART C, FORTIN G, PERRON J, et al. Wind turbine performance under icing conditions[J]. Wind Energy, 2008, 11(4): 319-333. [5] G. KRAJ A, L. BIBEAU E. Phases of icing on wind turbine blades characterized by ice accumulation[J]. Renewable Energy, 2010, 35(5): 966-972. [6] 王义进. 风机叶片防覆冰技术研究[J]. 机电信息, 2011, (9): 91,127. [7] PARENT O, ILINCA A. Anti-icing and de-icing techniques for wind turbines: Critical review[J]. Cold Regions Science and Technology, 2011, 65(1): 88-96. [8] 田鹏辉, 罗衡强, 汤亚男. 风力机组叶片防覆冰技术发展现状[J]. 电器工业, 2013, (5): 62-65. [9] 申晓东,时连斌,刘洪海,等. 风力发电机组防覆冰技术研究[J]. 电气技术, 2013,(6): 48-51. [10] FARZANEH M, C. RYERSON C. Anti-icing and deicing techniques[J]. Cold Regions Science and Technology, 2011, 65(1): 1-4. [11] 张聘亭, 杨涛, 卢绪祥. 覆冰对风力机专用翼型气动性能影响的数值研究[J]. 动力工程学报, 2011, 31(12): 955-959, 973. [12] 谭海辉, 李录平, 朱益军,等. 覆冰对风力机叶片动力特性影响的有限元分析[J].可再生能源, 2010, 28(4): 33-38. [13] PENG C Y, XING S L, YUAN Z Q, XIAO J Y, WANG C Q, ZENG J C. Preparation and anti-icing of superhydrophobic PVDF coating on a wind turbine blade[J]. Applied Surface Science, 2012, 259: 764-768. [14] 马茜,张宇昌,张胜寒,等. 风机叶片防覆冰涂料的进展与研究[J]. 华北电力技术,2013,(8): 47-50. [15] KARMOUCH R, G. ROSS G. Superhydrophobic wind turbine blade surfaces obtained by a simple deposition of silica nanoparticles embedded in epoxy[J]. Applied Surface Science, 2010, 257: 665-669. [16] MOHSENI M, AMIRFAZLI A. A novel electro-thermal anti-icing system for fiber-reinforced polymer composite airfoils[J]. Cold Regions Science and Technology, 2013, 87: 47-58. [17] 许斌, 于静梅. 基于电加热法的自控型防冰除冰叶片结构研究[J]. 应用能源技术, 2012, (12): 44-46. [18] 北京新宇阳科技有限公司. 高分子电热膜及其应用[P]. 中国: CN101346017A, 2008-8-13. |