[1] Thomas J, Thaickavil N N, Wilson P M. Strength and durability of concrete containing recycled concrete aggregates[J]. Journal of Building Engineering, 2018, 19: 349-365. [2] Zhou C, Chen Z. Mechanical properties of recycled concrete made with different types of coarse aggregate[J]. Construction and Building Materials, 2017, 134: 497-506. [3] 王长青, 肖建庄, 孙振平. 应变率效应对再生混凝土动态力学性能的影响[J]. 同济大学学报(自然科学版), 2016, 44(8): 1173-1181. [4] 肖建庄, 胡博, 丁陶. 再生混凝土早期抗开裂性能试验研究[J]. 同济大学学报(自然科学版), 2015, 43(11): 1649-1655. [5] Guo Y C, Zhang J H, Chen G M, et al. Compressive behaviour of concrete structures incorporating recycled concrete aggregates, rubber crumb and reinforced with steel fibre, subjected to elevated temperatures[J]. Journal of Cleaner Production, 2014, 72: 193-203. [6] 杨永生, 王军. 纤维再生混凝土基本力学性能试验[J]. 辽宁工程技术大学学报(自然科学版), 2013, 32(12): 1669-1672. [7] 安学旭, 宁致远, 孟敏强. 钢纤维再生混凝土拉压强度计算模型研究[J]. 四川建筑科学研究, 2018, 44(4): 97-101. [8] Gao D, Zhang L, Nokken M. Compressive behavior of steel fiber reinforced recycled coarse aggregate concrete designed with equivalent cubic compressive strength[J]. Construction and Building Materials, 2017, 141: 235-244. [9] 刘慈, 崔佳伟, 邓佳卓, 等. 不同掺入率混杂钢纤维对再生混凝土性能的影响[J]. 混凝土与水泥制品, 2016(12): 53-56. [10] 汪振双, 谭晓倩. 钢纤维再生粗集料混凝土的力学性能和抗冻性研究[J]. 硅酸盐通报, 2016, 35(4): 1184-1187. [11] Afroughsabet V, Biolzi L, Ozbakkaloglu T. Influence of double hooked-end steel fibers and slag on mechanical and durability properties of high performance recycled aggregate concrete[J]. Composites Structures, 2017, 181: 273-284. [12] Das C S, Dey T, Dandapat R, et al. Performance evaluation of polypropylene fibre reinforced recycled aggregate concrete[J]. Construction and Building Materials, 2018, 189: 649-659. [13] Hanumesh B M, Harish B A N, Ramana V. Influence of polypropylene fibres on recycled aggregate concrete[J]. Materials Today: Proceedings, 2018, 5(1): 1147-1155. [14] AkA K R, akIr , pek M. Properties of polypropylene fiber reinforced concrete using recycled aggregates[J]. Construction and Building Materials, 2015, 98: 620-630. [15] Dong J F, Wang Q Y, Guan Z W. Material properties of basalt fibre reinforced concrete made with recycled earthquake waste[J]. Construction & Building Materials, 2017, 130: 241-251. [16] 李素娟. 玄武岩纤维再生混凝土抗压强度试验研究[J]. 世界地震工程, 2016, 32(2): 89-92. [17] 李晓路, 金宝宏, 姚宇峰, 等. 玄武岩纤维再生混凝土的基本力学性能[J]. 河北大学学报(自然科学版), 2017, 37(3): 225-230. [18] Katkhuda H, Shatarat N. Improving the mechanical properties of recycled concrete aggregate using chopped basalt fibers and acid treatment[J]. Construction & Building Materials, 2017, 140: 328-335. [19] Mohsen A, Saeed F, Hassani A, et al. Mechanical properties of the concrete containing recycled fibers and aggregates[J]. Construction and Building Materials, 2017, 144: 392-398. [20] 杜园芳, 王社良, 余滨杉, 等. 混杂再生纤维对再生混凝土强度的影响研究[J]. 工业建筑, 2013, 43(11): 12-15. [21] Yaowarat T, Horpibulsuk S, Arulrajah A, et al. Compressive and flexural strength of polyvinyl alcohol-modified pavement concrete using recycled concrete aggregates[J]. Journal of Materials in Civil Engineering, 2018, 30(4): 1-8. [22] Erdem S, Dawson A R, Thom N H. Microstructure-linked strength properties and impact response of conventional and recycled concrete reinforced with steel and synthetic macro fibres[J]. Construction & Building Materials, 2011, 25(10): 4025-4036. [23] 史宇. 钢纤维再生混凝土抗冲击性能的试验研究[J]. 科技资讯, 2012(7): 39-40. [24] 朱红兵, 姚晨, 赵本露, 许永强. 聚丙烯纤维掺量对再生混凝土抗折疲劳性能影响的试验研究[J]. 四川建筑科学研究, 2017, 43(5): 104-107. [25] 秦道天. 钢纤维再生混凝土弯曲疲劳性能研究[J]. 混凝土与水泥制品, 2016(2): 91-94. [26] Kazmi S M S, Munir M J, Wu Y F, et al. Effect of macro-synthetic fibers on the fracture energy and mechanical behavior of recycled aggregate concrete[J]. Construction and Building Materials, 2018, 189: 857-868. [27] 孔祥清, 高化东, 刚建明, 等. 钢-聚丙烯混杂纤维再生混凝土断裂性能研究[J]. 混凝土, 2018(10): 74-78. [28] Xie J H, Huang L, Guo Y C, et al. Experimental study on the compressive and flexural behaviour of recycled aggregate concrete modified with silica fume and fibres[J]. Construction and Building Materials, 2018, 178: 612-623. [29] Chen G M, He Y H, Yang H, et al. Compressive behavior of steel fiber reinforced recycled aggregate concrete after exposure to elevated temperatures[J]. Construction and Building Materials, 2014, 71: 1-15. [30] Xie J H, Zhang Z, Lu Z, et al. Coupling effects of silica fume and steel-fiber on the compressive behaviour of recycled aggregate concrete after exposure to elevated temperature[J]. Construction and Building Materials, 2018, 184: 752-764. [31] 郭瑞晋, 毕重, 王涪, 等. 不同加入方式对高温后玄武岩纤维再生混凝土力学性能的影响[J]. 玻璃钢/复合材料, 2017(2): 88-92. [32] 孔祥清, 袁绍林, 董锦坤, 等. 聚丙烯-玄武岩混杂纤维再生混凝土高温性能试验研究[J]. 科学技术与工程, 2018, 18(21): 101-106. [33] 陈爱玖, 王静, 杨粉, 等. 纤维再生混凝土的抗冻性能试验研究[J]. 混凝土, 2013(2): 1-4. [34] 霍俊芳, 王聪, 侯永利, 等. 纤维再生混凝土的抗冻性能及孔结构研究[J]. 硅酸盐通报, 2018, 37(7): 2141-2145. [35] Richardson A, Coventry K, Bacon J. Freeze/thaw durability of concrete with recycled demolition aggregate compared to virgin aggregate concrete[J]. Journal of Cleaner Production, 2011, 19(2-3): 272-277. [36] 周静海, 岳秀杰, 白姝君. 废弃纤维再生混凝土的氯离子抗渗性能[J]. 济南大学学报(自然科学版), 2013, 27(3): 320-324. [37] Koushkbaghi M, Kazemi M J, Mosavi H, et al. Acid resistance and durability properties of steel fiber-reinforced concrete incorporating rice husk ash and recycled aggregate[J]. Construction and Building Materials, 2019, 202: 265-275. [38] 闫春岭, 周江华, 李帅. 钢纤维再生混凝土碳化的单因素试验[J]. 水泥工程, 2017(5): 86-89. [39] 卫志盛, 袁书成, 董江峰, 等. 玄武岩纤维再生混凝土硫酸盐侵蚀后力学性能试验研究[J]. 混凝土与水泥制品, 2018(11): 59-64. |