[1] 蒋维. 连续碳纤维增强热塑性复合材料制备与性能研究[D]. 武汉: 华中科技大学, 2018. [2] 陈宇. 连续碳纤维织物增强聚醚醚铜复合材料层合板的制备及性能研究[D]. 上海: 华东理工大学, 2020. [3] 单毫. 连续碳纤维增强聚醚醚酮的高效预浸技术和缠绕成型研究[D]. 上海: 华东理工大学, 2019. [4] 汤溢融. 长玻璃纤维增强聚苯硫醚复合材料及其夹层结构的制备及性能研究[D]. 上海: 华东理工大学, 2021. [5] 单毫, 李敏, 郭兵兵, 等. 工艺条件对粉末浸渍CF/PEEK预浸料层压板力学性能的影响[J]. 上海航天, 2019, 36(s1): 127-134. [6] 曾铮, 郭兵兵, 孙天舒, 等. 连续玻纤增强聚丙烯混纤纱织物层压成型工艺研究[J]. 玻璃钢/复合材料, 2018(1): 79-84. [7] 周天睿, 方立, 万明, 等. 连续CF增强PEEK复合材料层压板的制备工艺[J]. 工程塑料应用, 2016, 44(7): 52-56. [8] 万明, 方立, 周天睿, 等. 聚丙烯自增强复合材料层压板的制备和性能研究[J]. 工程塑料应用, 2016, 44(2): 40-45. [9] 方立, 周晓东, 吴忠泉, 等. 连续玻璃纤维增强聚丙烯复合板材的性能研究[J]. 工程塑料应用, 2012, 40(12): 12-15. [10] 周翔, 薛平, 吴晓娜, 等. 连续玻纤增强聚丙烯片材复合蜂窝板材制备及力学性能研究[J]. 塑料工业, 2015, 43(12): 78-82. [11] 周翔, 薛平, 贾明印, 等. 连续GF增强PP层合片材破坏形式及层间剪切强度研究[J]. 工程塑料应用, 2014, 42(11): 43-48. [12] 梁行. 连续剑麻纤维/玄武岩纤维混杂增强聚乳酸层压复合材料的制备与性能研究[D]. 广州: 华南理工大学, 2018. [13] 段俊鹏. 连续剑麻纤维增强聚乳酸层压复合材料的制备及力学性能研究[D]. 广州: 华南理工大学, 2017. [14] ALMEIDA O D, BESSARD E, BERNHART G. Influence of processing parameters and semi-finished product on consolidation of carbon/peek laminates[C]//Proc. 15th European Conference on Composite Materials ECCM15. 2012. [15] ANGIULI R, DELL'ANNO F, COSMA L, et al. SPARE project-improvement of continuous compression moulding process for the production of thermoplastic composite beams[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2021: 012024. [16] HANGS B, REIF M, JAUCH R, et al. Co-compression molding of tailored continuous-fiber-inserts and inline-compounded long-fiber-thermoplastics[C]//Society of Plastics Engineers: Automotive Composites Conference and Exhibition. 2012. [17] POPPE C, ALBRECHT F, KRAUβ C, et al. A 3D modelling approach for fluid progression during process simulation of wet compression moulding-motivation & approach[J]. Procedia Manufacturing, 2020, 47: 85-92. [18] TANAKA K, HIRATA A, KATAYAMA T. Continuous fiber reinforced thermoplastics molding by melted thermoplastic-resin transfer molding process[J]. Journal of the Society of Materials Science, Japan, 2019, 68(8): 628-635. [19] NOVO P J, SILVA J F, NUNES J P, et al. Pultrusion of fibre reinforced thermoplastic pre-impregnated materials[J]. Composites Part B: Engineering, 2016, 89: 328-339. [20] CHEN K, JIA M, HUA S, et al. Optimization of initiator and activator for reactive thermoplastic pultrusion[J]. Journal of Polymer Research, 2019, 26(2): 40. [21] CHEN K, JIA M, SUN H, et al. Thermoplastic reaction injection pultrusion for continuous glass fiber-reinforced polyamide-6 composites[J]. Materials, 2019, 12(3): 463. [22] ASENSIO M, ESFANDIARI P, NÚÑEZ K, et al. Processing of pre-impregnated thermoplastic towpreg reinforced by continuous glass fibre and recycled PET by pultrusion[J]. Composites Part B: Engineering, 2020, 200: 108365. [23] FERREIRA F, FERNANDES P, CORREIA N, et al. Development of a pultrusion die for the production of thermoplastic composite filaments to be used in additive manufacture[J]. Journal of Composites Science, 2021, 5(5): 120. [24] ALSINANI N, GHAEDSHARAF M, LEBEL L L. Effect of cooling temperature on deconsolidation and pulling forces in a thermoplastic pultrusion process[J]. Composites Part B: Engineering, 2021, 219: 108889. [25] 黄生江. 连续玻璃纤维增强聚丙烯的两步法拉挤成型工艺研究[D]. 上海: 华东理工大学, 2012. [26] 方立, 周晓东. 连续玻璃纤维增强聚丙烯拉挤棒材的性能稳定性[J]. 玻璃钢/复合材料, 2013(Z3): 13-16. [27] 荆蓉, 张锐涛, 孟雨辰, 等. 连续玻璃纤维/聚丙烯热塑性复合材料拉挤成型中的工艺参数[J]. 复合材料学报, 2020, 37(11): 2782-2788. [28] 张锐涛, 荆蓉, 王彦辉, 等. 玻璃纤维/聚丙烯复合纱拉挤型材制备及其性能研究[J]. 材料开发与应用, 2021, 36(1): 45-50. [29] 田会方, 陈海清, 吴迎峰. 复合材料管状制品拉挤-缠绕装置的设计与分析[J]. 复合材料科学与工程, 2021(2): 110-114. [30] CLAUDEL S, REPELLIN A, JAGEUNAUD L, et al. Advanced and affordable thermoplastic based composite tank for cryogenic fluid storage[C]//SAMPE Conference. 2010: 17-20. [31] MURRAY B R, DOYLE A, FEERICK P J, et al. Rotational moulding of PEEK polymer liners with carbon fibre/PEEK over tape-placement for space cryogenic fuel tanks[J]. Materials & Design, 2017, 132: 567-581. [32] HOSSEINI S M A, BARAN I, AKKERMAN R. Thermal modeling strategies for laser assisted tape winding (latw) process[C]//Proceedings of the 21st International Conference on Composite Materials. Xi'an, China: 2017: 20-25. [33] RIZZOLO R. Ultrasonic consolidation of thermoplastic composite prepreg for automated tape layup[M]. Rensselaer Polytechnic Institute, 2015. [34] TANNOUS M, BARASINSKI A, BINETRUY C, et al. Contribution of thermo-mechanical parameters and friction to the bonding of thermoplastic tapes in the tape winding process[J]. Journal of Materials Processing Technology, 2016, 229: 587-595. [35] LABEAS G N, WATITI V B, KATSIROPOULOS C V. Thermomechanical simulation of infrared heating diaphragm forming process for thermoplastic parts[J]. Journal of Thermoplastic Composite Materials, 2008, 21(4): 353-370. [36] MOLINA B J. Adaptation and study of a filament winding machine for in-situ consolidation of thermoplastic composites[D]. Laboratory of Composite Materials and Adaptive Structures, 2014. [37] BECK B, TAWFIK H, HAAS J, et al. Automated 3D skeleton winding process for continuous-fiber-reinforcements in structural thermoplastic components[M]//Advances in Polymer Processing 2020. Springer Vieweg, Berlin, Heidelberg: 2020: 150-161. [38] DOAN H G M. Development of automated tape winding setup for thermoplastic fibre reinforced polymer composites and bi-axial creep testing setup for tubular coupons[D]. Department of Mechanical Engineering University of Alberta, 2019. [39] 单毫, 陈宇, 李俊杰, 等. 红外加热缠绕成型工艺参数对CF/PEEK复合材料层间剪切性能的影响[J]. 复合材料科学与工程, 2020(1): 39-46. [40] 郭兵兵, 王连玉, 周春华, 等. 连续碳纤维增强聚苯硫醚(PPS)复合管材的缠绕成型及性能表征[J]. 玻璃钢/复合材料, 2014(4): 54-57, 17. [41] 郭兵兵, 方立, 周晓东. 玻纤增强聚丙烯缠绕管的层间性能及表观质量研究[J]. 工程塑料应用, 2014, 42(2): 42-46. [42] 郭兵兵, 周春华, 陈杰, 等. 玻纤增强聚丙烯管材缠绕成型温度工艺参数研究[J]. 工程塑料应用, 2013, 41(10): 56-59. [43] 李旭武, 周晓东, 郭兵兵, 等. 工艺条件对两步法缠绕成型连续玻璃纤维增强聚丙烯管材层间剪切强度及树脂含量的影响[J]. 玻璃钢/复合材料, 2011(6): 64-67. [44] 周正伟, 李俊光, 陈平, 等. 连续纤维带缠绕增强热塑性复合管短期爆破压力测试及理论分析[J]. 石油管材与仪器, 2017, 3(6): 47-50. [45] 李伟, 高维佳, 陈平, 等. 连续纤维增强PEK-C复合材料缠绕成型工艺及性能研究[J]. 固体火箭技术, 2011, 34(2): 261-264. [46] 李伟, 高维佳, 陈平. 高性能聚芳醚树脂的缠绕成型工艺研究[J]. 材料工程, 2009(s2): 463. [47] 吴瑶平. 热塑性复合材料缠绕过程温度场分析及工艺参数优化研究[D]. 南京: 南京航空航天大学, 2018. [48] COMER A J, RAY D, OBANDE W O, et al. Mechanical characterisation of carbon fibre-PEEK manufactured by laser-assisted automated-tape-placement and autoclave[J]. Composites Part A: Applied Science and Manufacturing, 2015, 69: 10-20. [49] FAYAZBAKHSH K, NIK M A, PASINI D, et al. Defect layer method to capture effect of gaps and overlaps in variable stiffness laminates made by automated fiber placement[J]. Composite Structures, 2013, 97: 245-251. [50] BELHAJ M, DELEGLISE M, COMAS-CARDONA S, et al. Dry fiber automated placement of carbon fibrous preforms[J]. Composites Part B: Engineering, 2013, 50: 107-111. [51] 陈杰, 张婷, 周天睿, 等. 连续GF增强PP层合板铺放成型工艺参数研究[J]. 工程塑料应用, 2015, 43(5): 43-48. [52] 李靖, 洪成, 郭兵兵, 等. 铺放成型工艺参数对复合材料板材弯曲强度和层间剪切强度的影响[J]. 玻璃钢/复合材料, 2017(5): 72-79. [53] 宋清华, 肖军, 文立伟, 等. 自动铺放成型热塑性复合材料的非等温结晶动力学研究[J]. 材料工程, 2018, 46(4): 120-126. [54] 宋清华, 刘卫平, 肖军, 等. 热塑性复合材料自动铺放工艺参数分析与优化[J]. 复合材料学报, 2018, 35(5): 1149-1157. [55] 宋清华, 刘卫平, 肖军, 等. 热塑性复合材料自动铺放过程中红外加热技术研究[J]. 材料工程, 2019, 47(1): 77-83. [56] 王显峰, 常亮, 肖军, 等. 针对铺丝轨迹规划设计的复杂数模缺陷修补技术[J]. 计算机辅助设计与图形学学报, 2018, 30(9): 1773-1777. [57] 蔡志强, 肖军, 文立伟, 等. 基于预浸纱自动铺放缺陷的分割算法[J]. 航空材料学报, 2017, 37(2): 21-27. [58] 赵志远. 基于机器人的热塑性复合材料铺放装备及工艺仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. [59] 孙守政. 复合材料铺丝构件多尺度力学特性及其协同工艺优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. [60] 王思远. 复合材料自动铺丝成型孔隙缺陷特性及工艺优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. [61] WANIGASEKARA C, OROMIEHIE E, SWAIN A, et al. Machine learning-based inverse predictive model for AFP based thermoplastic composites[J]. Journal of Industrial Information Integration, 2021, 22: 100197. [62] SHADMEHRI F, HOA S V, FORTIN-SIMPSON J, et al. Effect of in situ treatment on the quality of flat thermoplastic composite plates made by automated fiber placement (AFP)[J]. Advanced Manufacturing: Polymer & Composites Science, 2018, 4(2): 41-47. [63] AGHABABAEI T O, VAN H S, SHADMEHRI F, et al. Determination of convective heat transfer coefficient for automated fiber placement (AFP) for thermoplastic composites using hot gas torch[J]. Advanced Manufacturing: Polymer & Composites Science, 2020, 6(2): 86-100. [64] KUMAR D, KO M G, ROY R, et al. AFP mandrel development for composite aircraft fuselage skin[J]. International Journal of Aeronautical and Space Sciences, 2014, 15(1): 32-43. [65] RIZZOLO R H, WALCZYK D F. Ultrasonic consolidation of thermoplastic composite prepreg for automated fiber placement[J]. Journal of Thermoplastic Composite Materials, 2016, 29(11): 1480-1497. [66] 刘腾飞, 田小永, 薛莲. 连续碳纤维增强尼龙6复合材料3D打印装备与参数调控[J]. 机械工业标准化与质量, 2020(3): 27-30, 38. [67] 刘腾飞, 田小永, 朱伟军, 等. 连续碳纤维增强聚乳酸复合材料3D打印及回收再利用机理与性能[J]. 机械工程学报, 2019, 55(7): 128-134. [68] 田小永, 王清瑞, 李涤尘, 等. 可控变形复合材料结构4D打印[J]. 航空制造技术, 2019, 62(Z1): 20-27. [69] 田小永, 刘腾飞, 杨春成, 等. 高性能纤维增强树脂基复合材料3D打印及其应用探索[J]. 航空制造技术, 2016(15): 26-31. [70] 郑天宇. 连续纤维复合材料3D打印关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. [71] 夏正付. 纤维增强复合材料增材制造技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. [72] 李晓琴. 基于五轴平台CFRP增材制造轨迹控制方法研究[D]. 淮南: 安徽理工大学, 2017. [73] 李昊然. 碳纤维复合材料3D打印机喷头分析和设计[D]. 呼和浩特: 内蒙古工业大学, 2019. [74] MATSUZAKI R, UEDA M, NAMIKI M, et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation[J]. Scientific reports, 2016, 6(1): 1-7. [75] HEIDARI-RARANI M, RAFIEE-AFARANI M, ZAHEDI A M. Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites[J]. Composites Part B: Engineering, 2019, 175: 107147. [76] WICKRAMASINGHE S, DO T, TRAN P. FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments[J]. Polymers, 2020, 12(7): 1529. [77] PARANDOUSH P, ZHOU C, LIN D. 3D printing of ultrahigh strength continuous carbon fiber composites[J]. Advanced Engineering Materials, 2019, 21(2): 1800622. [78] HOU Z, TIAN X, ZHANG J, et al. 3D printed continuous fibre reinforced composite corrugated structure[J]. Composite Structures, 2018, 184: 1005-1010. |