[1] MCKINNON M B, DING Y, STOLIAROV S I, et al. Pyrolysis model for a carbon fiber/epoxy structural aerospace composite[J]. Journal of Fire Sciences, 2016, 35(1): 36-61. [2] YU Z, ZHOU A. Fiber reinforced polymer composite structures in fire: Modeling and validation[J]. Mechanics of Composite Materials & Structures, 2013, 20(5): 361-372. [3] GRIGORIOU K, MOURITZ A P, et al. Comparative assessment of the fire structural performance of carbon-epoxy composite and aluminium alloy used in aerospace structures[J]. Materials & Design, 2016, 108: 699-706. [4] GRIGORIOU K, MOURITZ A P. Influence of ply stacking pattern on the structural properties of quasi-isotropic carbon-epoxy laminates in fire[J]. Composites Part A Applied Science & Manufacturing, 2017, 99: 113-120. [5] FAA. Equivalent level of safety finding for the boeing model 787 series aircraft fuselage associated to post-crash fire survivability: TC6918SE-T-CS-14[S]. United States: Federal Aviation Administration, 2011. [6] Federal aviation administration. Docket No. NM366 special conditions No. 25-348-SC special conditions: Boeing 787-8 airplane; composite wing and fuel tank structure fire protection requirements[S]. USA: Department of Transportation, 2007. [7] Federal aviation administration. Composite aircraft structure: AC 20-107B[S]. United States: Federal Aviation Administration, 2011. [8] HENDERSON J B, WIEBELT J A, TANT M R. A model for the thermal response of polymer composite materials with experimental verification[J]. Journal of Composite Materials, 1985, 19(6): 579-595. [9] GIBSON A G, WU Y S, CHANDLER H W, et al. A model for the thermal performance of thick composite laminates in hydrocarbon fires[J]. Oil & Gas ence & Technology, 2006, 50(1): 69-74. [10] LOOYEH M R E, BETTESS P, GIBSON A G. A one-dimensional finite element simulation for the fire-performance of GRP panels for offshore structures[J]. International Journal of Numerical Methods for Heat and Fluid Flow, 1997, 7(6): 609-625. [11] MILKE J A, VIZZINI A J. Thermal response of fire-exposed composites[J]. Journal of Composites Technology & Research, 1991, 13(3): 145-151. [12] MCMANUS H L N, SPRINGER G S. High temperature thermomechanical behavior of carbon-phenolic and carbon-carbon composites, Ⅰ. Analysis[J]. Journal of Composite Materials, 1992, 26(2): 230-255. [13] MCMANUS H L N, SPRINGER G S. High temperature thermomechanical behavior of carbon-phenolic and carbon-carbon composites, Ⅱ. Results[J]. Journal of Composite Materials, 1992, 26(2): 230-255. [14] TRANCHARD P, SAMYN F, DUQUESNE S, et al. Modelling behaviour of a carbon epoxy composite exposed to fire: Part Ⅰ-characterisation of thermophysical properties[J]. Materials, 2017, 10(5): 494. [15] TRANCHARD P, SAMYN F, DUQUESNE S, et al. Modelling behaviour of a carbon epoxy composite exposed to fire: Part Ⅱ-comparison with experimental results[J]. Materials, 2017, 10(5): 470. [16] KOYANAGI J, SHINBA K, FUKUDA Y, et al. A Numerical simulation of delamination caused by internal gas pressure for mid-density CFRP[J]. Composites Part A: Applied ence and Manufacturing, 2018, 115. [17] 陈海龙, 方国东, 李林杰, 等. 高硅氧/酚醛复合材料热-力-化学多物理场耦合计算[J]. 复合材料学报, 2014, 31(3): 533-540. [18] 时圣波. 高硅氧/酚醛复合材料的烧蚀机理及热-力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. [19] KANDARE E, KANDOLA B K, MCCARTHY E D, et al. Fiber-reinforced epoxy composites exposed to high temperature environments. Part Ⅱ: Modeling mechanical property degradation[J]. Journal of Composite Materials, 2011, 45(14): 1511-1521. |