[1] 宁莉, 杨绍昌, 冷悦, 等. 先进复合材料在飞机上的应用及其制造技术发展概述[J]. 复合材料科学与工程, 2020(5): 123-128. [2] 马力, 杨金水. 新型轻质复合材料夹芯结构振动阻尼性能研究进展[J]. 应用数学和力学, 2017, 38(4): 369-397. [3] 王绍清, 刘鹏, 梁森. 复合材料层合板动力学性能及影响参数的研究[J]. 玻璃钢/复合材料, 2018(12): 36-40. [4] TOWSYFYAN H, BIGURI A, BOARDMAN R, et al. Successes and challenges in non-destructive testing of aircraft composite structures[J]. Chinese Journal of Aeronautics, 2020, 33(3): 771-791. [5] 王绍清, 郑长升, 梁森, 等. 嵌入式共固化复合材料阻尼结构的动力学性能[J]. 材料科学与工程学报, 2020, 38(2): 278-281. [6] 倪楠楠, 温月芳, 贺德龙, 等. 结构-阻尼复合材料研究进展[J]. 材料工程, 2015, 43(6): 90-101. [7] 林松, 徐超, 吴斌. 嵌入多层黏弹性胶膜复合材料阻尼工字梁的多目标设计优化[J]. 计算机辅助工程, 2010, 19(4): 44-49. [8] 赵文龙. 粘弹性约束阻尼夹层结构振动分析及优化设计[D]. 天津: 天津大学, 2014. [9] 廖国峰, 蔡俊, 傅雅琴, 等. 重质粒子/NBR-PVC微孔阻尼复合材料的制备及其隔声性能[J]. 复合材料学报, 2018, 35(5): 1066-1072. [10] HUANG Z, QIN Z, CHU F, et al. A compression shear mixed finite element model for vibration and damping analysis of viscoelastic sandwich structures[J]. Journal of Sandwich Structures and Materials, 2019, 21(6): 1775-1798. [11] ŞIMSEK M, ALSHUJAIRI M. Static, free and forced vibration of functionally graded (FG) sandwich beams excited by two successive moving harmonic loads[J]. Composites Part B-engineering, 2017, 108: 18-34. [12] SOBHY M. Size dependent hygro-thermal buckling of porous FGM sandwich microplates and microbeams using a novel four-variable shear deformation theory[J]. International Journal of Applied Mechanics, 2020, 12(2): 2050017. [13] SOMIREDDY M, RAJAGOPAL A. Meshless natural neighbor Galerkin method for the bending and vibration analysis of composite plates[J]. Composite Structures, 2014, 111: 138-146. [14] 米鹏. 嵌入式共固化复合材料阻尼结构动力学性能的数值模拟与实验研究[D]. 青岛: 青岛理工大学, 2011. [15] ARIKOGLU A, OZKOL I. Vibration analysis of composite sandwich beams with viscoelastic core by using differential transform method[J]. Composite Structures, 2010, 92(12): 3031-3039. |