[1] LI Q T, JIANG M J, WU G, et al. Photothermal conversion triggered precisely targeted healing of epoxy resin based on thermoreversible diels-alder network and amino-functionalized carbon nanotubes[J]. ACS Applied Materials &Interfaces, 2017, 9(24): 20797-20807. [2] MEMON H, WEI Y. Welding and reprocessing of disulfide-containing thermoset epoxy resin exhibiting behavior reminiscent of a thermoplastic[J]. Journal of Applied Polymer Science, 2020, 137(47): 49541. [3] KLOXIN C J, SCOTT T F, ADZIMA B J, et al. Covalent adaptable networks (CANs): A unique paradigm in crosslinked polymers[J]. Macromolecules, 2010, 43(6): 2643-2653. [4] LIU H C, ZHANG H, WANG H, et al. Weldable, malleable and programmable epoxy vitrimers with high mechanical properties and water insensitivity[J]. Chemical Engineering Journal, 2019, 368: 61-70. [5] AAONTARNAL D, CAPELOT M, TOURNILHAC F, et al. Silica-like malleable materials from permanent organic networks[J]. Science, 2011, 334(6058): 965-968. [6] LIU M, ZHONG J, LI Z, et al. A high stiffness and self-healable polyurethane based on disulfide bonds and hydrogen bonding[J]. European Polymer Journal, 2020, 124: 109475. [7] AZCUNE I, ODRIOZOLA I. Aromatic disulfide crosslinks in polymer systems: Self-healing, reprocessability, recyclability and more[J]. European Polymer Journal, 2016, 84: 147-160. [8] LI H, BAI J, SHI Z X, et al. Environmental friendly polymers based on schiff-base reaction with self-healing, remolding and degradable ability[J]. Polymer, 2016, 85: 106-113. [9] HASHIMOTO T, MEIJI H, URUSHISAKI M, et al. Degradable and chemically recyclable epoxy resins containing acetal linkages: Synthesis, properties, and application for carbon fiber-reinforced plastics[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2012, 50(17): 3674-3681. [10] YAMAGUCHI A, HASHIMOTO T, KAKICHI Y, et al. Recyclable carbon fiber-reinforced plastics (CFRP) containing degradable acetal linkages: Synthesis, properties, and chemical recycling[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2015, 53(8): 1052-1059. [11] YANG X, GUO Y, LUO X, et al. Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivitiesby incorporating BN fillers via in-situ polymerization[J]. Composites Science and Technology, 2018, 164: 59-64. [12] ZHANG D D, RUAN Y B, ZHANG B Q, et al. A self-healing PDMS elastomer based on acylhydrazone groups and the role of hydrogen bonds[J]. Polymer, 2017, 120: 189-196. [13] ZECHEL S, GEITNER R, ABEND M, et al. Intrinsic self-healing polymers with a high E-modulus based on dynamic reversible urea bonds[J]. NPG Asia Materials, 2017, 9(8): 420. [14] SI H W, ZHOU L, WU Y P, et al. Rapidly reprocessable, degradable epoxy vitrimer and recyclable carbon fiber reinforced thermoset composites relied on high contents of exchangeable aromatic disulfide crosslinks[J]. Composites Part B: Engineering, 2020, 199: 108278. [15] SHI Q, YU K, DUNN M L, et al. Solvent assisted pressure-free surface welding and reprocessing of malleable epoxy polymers[J]. Macromolecules, 2016, 49(15): 5527-5537. [16] IVANOV A E, LARSSON H, GALAEV I Y, et al. Synthesis of boronate-containing copolymers of N, N-dimethylacrylamide, their interaction with poly(vinyl alcohol) and rheological behaviour of the gels[J]. Polymer, 2004, 45(8): 2495-2505. [17] CASH J J, KUBO T, BAPAT A P, et al. Room-temperature self-healing polymers based on dynamic-covalent boronic esters[J]. Macromolecules, 2015, 48(7): 2098-2106. [18] CHEN Y, TANG Z H, ZHANG X H, et al. Covalently cross-linked elastomers with self-healing and malleable abilities enabled by boronic ester bonds[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 24224-24231. [19] HEMI N N. Cure and thermal properties of brominated epoxy systems[J]. Journal of Applied Polymer Science, 2010, 33(4): 1173-1185. [20] 谭怀山, 欧雄燕, 代堂军, 等. 新型含联苯结构环氧树脂的合成与性能[J]. 化工新型材料, 2008, 11: 49-50, 61. [21] 杨小军, 刘文凤. 玻璃纤维增强复合材料用环氧树脂基体性能研究[J]. 热固性树脂, 2021, 36(1): 27-30. [22] 孙丽莉, 贾玉玺, 孙胜, 等. 界面强度对纤维复合材料破坏及力学性能的影响[J]. 山东大学学报, 2009, 39(2): 101-103. [23] 王丽雪, 尹志娟, 刘海鸥. 玻璃纤维增强环氧树脂单向复合材料力学性能分析[J]. 黑龙江工程学院学报, 2009, 23(3): 73-74. [24] 冯媛媛. 等离子体改性玻璃纤维增强的环氧树脂电气性能研究[D]. 西安: 西安理工大学, 2017. [25] 郭志昂, 贺辛亥, 张婷, 等. RTM制备玻璃纤维增强环氧树脂复合材料的力学性能分析[J]. 合成纤维, 2020, 49(1): 52-56. |