[1] 董慧民, 益小苏, 安学锋, 等. 纤维增强热固性聚合物基复合材料层间增韧研究进展[J]. 复合材料学报, 2014, 31(2): 273-285. [2] 冯永国, 许伟, 王海龙. 碳纤维环氧树脂复合材料层间增韧研究进展[C]//第十八届玻璃钢/复合材料学术年年论文集. 北京: 中国硅酸盐学会玻璃钢分会, 2010: 184-186. [3] TAY T E. Characterization and analysis of delamination fracture in composites: An overview of developments from 1990 to 2001[J]. Applied Mechanics Reviews, 2003, 56(1): 1. [4] 赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J]. 航空学报, 2019, 40(1): 171-199. [5] 何宇声. 复合材料在材料科学技术中的作用和地位: 迎接二十一世纪挑战[J]. 玻璃钢/复合材料, 2001(1): 37-41. [6] 杨鹏, 张黎. Z-pin增强技术在碳纤维复合材料中的现状与展望[J]. 山东工业技术, 2016(5): 33-34. [7] HILLERMEIER R W, SEFERIS J C. Interlayer toughening of resin transfer molding composites[J]. Composites Part A Applied Science & Manufacturing, 2001, 32(5): 721-729. [8] HOJO M, MATSUDA S, TANAKA M, et al. Mode Ⅰ delamination fatigue properties of interlayer-toughened CF/epoxy laminates[J]. Composites Science & Technology, 2006, 66(5): 665-675. [9] GAO F, JIAO G, LU Z, et al. Mode Ⅱ delamination and damage resistance of carbon/epoxy composite, laminates interleaved with thermoplastic particles[J]. Journal of Composite Materials, 2007, 41(1): 111-123. [10] ZUCCHELLI A, FOCARETE M L, GUALANDI C, et al. Electrospun nanofibers for enhancing structural performance of composite materials[J]. Polymers for Advanced Technologies, 2015, 22(3): 339-349. [11] 邢亮, 吴宁, 焦亚男. 静电纺纳米纤维对复合材料层间增强增韧的研究进展[J]. 材料导报, 2013, 27(15): 63-66. [12] KUWATA M, HOGG P J. Interlaminar toughness of interleaved CFRP using non-woven veils: Part 1. Mode-Ⅰ testing[J]. Composites Part A Applied Science & Manufacturing, 2011, 42(10): 1551-1559. [13] 刘玲, 黄争鸣, 董国华, 等. 层间环氧纳米纤维薄膜对层合板力学性能的影响[J]. 复合材料学报, 2006, 23(3): 15-19. [14] DZENIS Y A, RENEKER D H, et al. Novel laminated composites with nanoreinforced interfaces[C]//European Conferenceon Composite Materials (ECCM-8). Italy: University of Naples Parthenope, 1998: 518-524. [15] SIHN S, PARK J, KIM R, et al. Prediction of delamination resistance in laminated composites with electrospun nano-interlayers using a cohesive zone model[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Newport: AIAA, 2006. [16] SIHN S, KIM R Y, HUH W, et al. Improvement of damage resistance in laminated composites with electrospun nano-interlayers[J]. Composites Science & Technology, 2008, 68(3): 673-683. [17] 杨瑞瑞. PEI纳米纤维层间增韧碳纤维环氧复合材料性能研究[J]. 材料开发与应用, 2015(5): 57-62. [18] 刘玲, 黄争鸣, 周烨欣, 等. 超细纤维增强复合材料Ⅰ型层间断裂韧性分析[J]. 复合材料学报, 2007, 24(4): 166-171. [19] 赵亚娣, 张广鑫, 傅宏俊, 等. 玄武岩纤维层合复合材料层间增韧方法研究[J]. 化学与黏合, 2017, 39(3): 167-169, 227. [20] 崔雪娇. 玄武岩纤维增强复合材料层间增韧方法的研究[D]. 天津: 天津工业大学, 2016. [21] 徐磊. 聚砜增韧改性环氧树脂及其层间增韧液体成型碳纤维复合材料的研究[D]. 上海: 东华大学, 2019. [22] 益小苏, 许亚洪, 程群峰, 等. 层间韧化的碳纤维复合材料层压板的力学性能[J]. 材料研究学报, 2008, 22(4): 337-346. [23] 张朋, 刘刚, 胡晓兰, 等. 结构化增韧层增韧RTM复合材料性能[J]. 复合材料学报, 2012, 29(4): 1-9. [24] LI G, LI P, ZHANG C, et al. Inhomogeneous toughening of carbon fiber/epoxy composite using electrospunpolysulfone nanofibrous membranes by in situ phase separation[J]. Composites Science and Technology, 2008, 68(3-4): 987-994. [25] SOHN M S, HU X Z. Delamination behaviour of carbon fibre/epoxy composite laminates with short fibre reinforcement[J]. Scripta Metallurgica Et Materialia, 1994, 30(11): 1467-1472. [26] SOHN M S, HU X Z. Mode Ⅱ delamination toughness of carbon-fibre/epoxy composites with chopped Kevlar fibre reinforcement[J]. Composites Science & Technology, 1994, 52(3): 439-448. [27] SOHN M S, HU X Z. Comparative study of dynamic and static delamination behaviour of carbon fibre/epoxy composite laminates[J]. Composites, 1995, 26(12): 849-858. [28] 莫正才, 胡程耀, 霍冀川, 等. 苎麻短纤维层间增韧碳纤维/环氧树脂复合材料[J]. 复合材料学报, 2017, 34(6): 1237-1244. [29] 莫正才. 苎麻短纤维层间增韧碳纤维/环氧树脂复合材料的研究[D]. 绵阳: 西南科技大学, 2017. [30] 赵丽军. 复合材料层板损伤和短纤维层间增韧的细观力学研究[D]. 沈阳: 东北大学, 2010. [31] 聂小林, 马丕波, 王亚柏. 玻璃短纤维对多层多轴向经编复合材料层间撕裂性能影响[J]. 玻璃钢/复合材料, 2017(5): 57-61. [32] LEE S H, NOGUCHI H, KIM Y B, et al. Effect of interleaved non-woven carbon tissue on interlaminar fracture toughness of laminated composites: Part Ⅰ-Mode Ⅱ[J]. Journal of Composite Materials, 2002, 36(18): 2153-2168. [33] LEE S H, NOGUCHI H, KIM Y B, et al. Effect of interleaved non-woven carbon tissue on interlaminar fracture toughness of laminated composites: Part Ⅱ-Mode Ⅰ[J]. Journal of Composite Materials, 2002, 36(18): 2169-2181. [34] KOMAROV V A, PAVLOV A A, PAVLOVA S A, et al. Reinforcement of aerospace structural elements made of layered composite materials[J]. Procedia Engineering, 2017, 185: 126-130. [35] 邢灵冰. 复合材料/镀层界面的短纤增强机理与工艺[D]. 大连: 大连理工大学, 2017. [36] YAMASHITA S, HATTA H, TAKEI T, et al. Interlaminar reinforcement of laminated composites by addition of oriented whiskers in the matrix[J]. Journal of Composite Materials, 1992, 26(9): 1254-1268. [37] YAO Y Y, ZHAO L P, DOU R S, et al. The fabrication and microstructure analysis of carbon fiber composites with interlaminar reinforcement[J]. Materials Science Forum, 2016, 878: 59-63. [38] 孙爱芳, 刘敏珊, 董其伍. 短切纤维增强复合材料拉伸强度的预测[J]. 材料研究学报, 2008, 22(3): 333-336. [39] 刘海. 冲击载荷作用下复合材料层板层间短纤维增韧研究[D]. 沈阳: 东北大学, 2006. [40] 王广峰. 层合板复合材料层间断裂韧性的提高研究[D]. 天津: 天津工业大学, 2002. [41] 高相胜, 张凤鹏. 短纤维层间增韧的三维有限元分析[J]. 复合材料学报, 2009, 26(6): 182-188. [42] 高峰, 矫桂琼, 贾普荣, 等. 复合材料层间增韧机理的有限元分析[J]. 机械强度, 2007, 29(1): 63-66. [43] 张凤鹏, 刘海, 黄宝宗. 冲击载荷作用下层间短纤维增韧研究[J]. 东北大学学报(自然科学版), 2007, 28(4): 605-608. [44] 刘大成. 短纤维增韧层间复合材料板内浅埋分层扩展研究[D]. 沈阳: 东北大学, 2010. [45] 崔崧, 黄宝宗, 张立洲, 等. 层间短纤维的桥联和增韧分析[J]. 计算力学学报, 2004, 21(2): 216-222. [46] HUANG B Z, HU X Z, LIU J. Modelling of inter-laminar toughening from chopped Kevlar fibers[J]. Composites Science and Technology, 2004, 64(13-14): 2165-2175. [47] HUANG B Z, HU X Z. Modelling toughening of composites with interleaved chopped fibres[J]. Plastics Rubber & Composites, 2014, 31(4): 186-189. [48] 李英梅, 刘军, 黄宝宗. 短纤维夹层对Ⅰ型层间断裂韧性的影响[J]. 东北大学学报(自然科学版), 2002, 23(11): 1119-1122. [49] NIE J, JIA Y, QU P, et al. Carbon nanotube/carbon fiber multiscale composite: Influence of interfacial strength on mechanical properties[J]. Journal of Inorganic & Organometallic Polymers & Materials, 2011, 21(4): 937-940. [50] SHEN Z, BATEMAN S, WU D Y, et al. The effects of carbon nanotubes on mechanical and thermal properties of woven glass fibre reinforced polyamide-6 nanocomposites[J]. Composites Science and Technology, 2009, 69(2): 239-244. [51] LARS BÖGER, JAN SUMFLETH, HANNES HEDEMANN, et al. Improvement of fatigue life by incorporation of nanoparticles in glass fibre reinforced epoxy[J]. Composites Part A, 2010, 41(10): 1419-1424. [52] 朱莉莉, 顾轶卓, 孙志杰, 等. 分散方法对低含量碳纳米管玻纤/环氧层板性能的影响[J]. 复合材料学报, 2012, 29(5): 11-17. [53] SAGER R J, KLEIN P J, LAGOUDAS D C, et al. Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix[J]. Composites Science & Technology, 69(7-8): 898-904. [54] LAACHACHI A, VIVET A, NOUET G, et al. A chemical method to graft carbon nanotubes onto a carbon fiber[J]. Materials Letters, 2008, 62(3): 394-397. [55] YAO H C, ZHOU G D, WANG W T, et al. Effect of polymer-grafted carbon nanofibers and nanotubes on the interlaminar shear strength and flexural strength of carbon fiber/epoxymultiscale composites[J]. Composite Structures, 2018, 195: 288-296. [56] ALMUHAMMADI K, ALFANO M, YANG Y, et al. Analysis of interlaminar fracture toughness and damage mechanisms in composite laminates reinforced with sprayed multi-walled carbon nanotubes[J]. Materials & Design, 2014, 53: 921-927. [57] WILLIAMS J, GRADDAGE N, RAHATEKAR S. Effects of plasma modified carbon nanotube interlaminar coating on crack propagation in glass epoxy composites[J]. Composites Part A, 2013, 54(54): 173-181. [58] ASHRAFI B, GUAN J W, MIRJALILI V, et al. Enhancement of mechanical performance of epoxy/carbon fiber laminate composites using single-walled carbon nanotubes[J]. Composites Science and Technology, 71(13): 1569-1578. [59] 范雨娇, 顾轶卓, 邓火英, 等. 碳纳米管加入方式对碳纤维/环氧树脂复合材料层间性能的影响[J]. 复合材料学报, 2015, 32(2): 332-340. [60] 于妍妍, 张远, 高丽敏, 等. 基于碳纳米管薄膜的复合材料层间增韧[J]. 航空学报, 2019, 40(10): 307-314. [61] 张远, 于妍妍, 何静宇, 等. 碳纳米管薄膜增强复合材料Ⅰ型断裂韧性研究[J]. 炭素技术, 2018, 37(4): 15-20, 32. [62] WICKS S S, VILLORIA R G D, WARDLE B L. Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes[J]. Composites Science and Technology, 2010, 70(1): 20-28. [63] DAVIS D C, WHELAN B D. An experimental study of interlaminar shear fracture toughness of a nanotube reinforced composite[J]. Composites Part B: Engineering, 2011, 42(1): 105-116. [64] SHAN F L, GU Y Z, LI M, et al. Effect of deposited carbon nanotubes on interlaminar properties of carbon fiber-reinforced epoxy composites using a developed spraying processing[J]. Polymer Composites, 2013, 34(1): 41-50. [65] YAO H, ZHOU G, WANG W, et al. Effect of polymer-grafted carbon nanofibers and nanotubes on the interlaminar shear strength and flexural strength of carbon fiber/epoxy multiscale composites[J]. Composite Structures, 2018, 195: 288-296. [66] ABOT J L, SONG Y, SCHULZ M J, et al. Novel carbon nanotube array-reinforced laminated composite materials with higher interlaminar elastic properties[J]. Composites Science & Technology, 2008, 68(13): 2755-2760. [67] KALFONCOHEN E, LEWIS D, RAVINE J, et al. Structure-process-property study of aligned carbon nanotube interlaminar reinforcement in woven carbon fiber prepreg laminate[C]//Aiaa/asce/ahs/asc Structures, Structural Dynamics, & Materials Conference. 2015. [68] VILLORIA R G D, HALLANDER P, YDREFORS L, et al. In-plane strength enhancement of laminated composites via aligned carbon nanotube interlaminar reinforcement[J]. Composites Science and Technology, 2016, 133: 33-39. [69] ABOT J L, SONG Y. On the mechanical response of carbon nanotube array laminated composite materials[J]. Journal of Reinforced Plastics and Composites, 2010, 29(22): 3401-3410. [70] KALFON-COHEN E, KOPP R, FURTADO C, et al. Synergetic effects of thin plies and aligned carbon nanotube interlaminar reinforcement in composite laminates[J]. Composites Science and Technology, 2018, 166: 160-168. [71] BLANCO J, GARCIA E J, GUZMAN D V R, et al. Limiting mechanisms of mode Ⅰ interlaminar toughening of composites reinforced with aligned carbon nanotubes[J]. Journal of Composite Materials, 2009, 43(8): 825-841. [72] KRAVCHENKO O G, PEDRAZZOLI D, KOVTUN D, et al. Incorporation of plasma-functionalized carbon nanostructures in composite laminates for interlaminar reinforcement and delamination crack monitoring[J]. Journal of Physics and Chemistry of Solids, 2018, 112: 163-170. [73] BHANUPRAKASH L, ALI A, MOKKOTH R, et al. Mode Ⅰ and Mode Ⅱ interlaminar fracture behavior of E-glass fiber reinforced epoxy composites modified with reduced exfoliated graphite oxide[J]. Polymer Composites, 2018, 39(s4): E2506-E2518. [74] CHIU K R, DUENAS T, DZENIS Y, et al. Comparative study of nanomaterials for interlaminar reinforcement of fiber-composite panels[C]//Behavior and Mechanics of Multifunctional Materials and Composites 2013. International Society for Optics and Photonics, 2013: 8689. [75] GILBERT E N, HAYES B S, SEFERIS J C. Interlayer toughened unidirectional carbon prepreg systems: Effect of preformed particle morphology[J]. Composites Part A, 2003, 34(3):245-252. [76] ODAGIRI N, KISHI H, YAMASHITA M. Development of TORAYCA prepreg P2302 carbon fiber reinforced plastic for aircraft primary structural materials[J]. Advanced Composite Materials, 1996, 5(3): 249-254. [77] 高峰, 矫桂琼, 宁荣昌, 等. 层间颗粒增韧复合材料层压板的Ⅱ型层间断裂韧性[J]. 西北工业大学学报, 2005, 23(2): 184-188. [78] 高峰. 复合材料层压板层间颗粒增韧技术[D]. 西安: 西北工业大学, 2004. [79] GAO F, JIAO G, LU Z, et al. Mode Ⅱ delamination and damage resistance of carbon/epoxy composite, laminates interleaved with thermoplastic particles[J]. Journal of Composite Materials, 2006, 41(1): 111-123. [80] 张兴迪, 刘刚, 党国栋, 等. 含磷聚芳醚酮颗粒层间增韧碳纤维/双马树脂RTM复合材料[J]. 高分子学报, 2016(9): 1254-1262. [81] ALSAADI M, UGLA A A, ERKLIG A. A comparative study on the interlaminar shear strength of carbon, glass, and Kevlar fabric/epoxy laminates filled with SiC particles[J]. Journal of Composite Materials, 2017, 51(20): 2835-2844. [82] YUN N G, WON Y G, KIM M C. Toughening of carbon fiber/epoxy composite by inserting polysulfone film to form morphology spectrum[J]. Polymer, 2004, 45(20): 6953-6958. [83] 方立. 连续纤维增强热塑性复合材料制备及其性能的研究[D]. 上海: 华东理工大学, 2012. [84] NAFFAKH M, DUMON M, J F GÉRARD. Study of a reactive epoxy-amine resin enabling in situ dissolution of thermoplastic films during resin transfer moulding for toughening composites[J]. Composites Science and Technology, 2006, 66(10): 1376-1384. [85] ABOT J L, GABBAI R D, HARSLEY K. Effect of woven fabric architecture on interlaminar mechanical response of composite materials: an experimental study[J]. Journal of Reinforced Plastics and Composites, 2011, 30(24): 2003-2014. [86] HU Q, ZHANG Y, MAO Y, et al. A comparative study on interlaminar properties of L-shaped two-dimensional (2D) and three-dimensional (3D) woven composites[J]. Applied Composite Materials, 2019, 26(3): 723-744. [87] 邓富泉, 张丽, 刘少祯, 等. 单向连续碳纤维-玻璃纤维层间混杂增强环氧树脂基复合材料的力学性能[J]. 复合材料学报, 2018, 35(7): 1857-1863. [88] 齐业雄, 姜亚明, 李嘉禄. 芳纶捆绑对纬编双轴向多层衬纱织物增强树脂复合材料层间性能的影响[J]. 复合材料学报, 2020, 37(5): 1081-1087. [89] DIBLÍKOVÁ L, MAEK Z, KRÁL M. The effect of carbon fiber plasma treatment on the wettability and interlaminar shear strength of geopolymer composite[J]. Journal of the Australian Ceramic Society, 2019, 55(4): 1139-1145. [90] HUO S, THAPA A, ULVEN C A. Effect of surface treatments on interfacial properties of flax fiber-reinforced composites[J]. Advanced Composite Materials, 2013, 22(2): 109-121. [91] LUO M, TIAN X, ZHU W, et al. Controllable interlayer shear strength and crystallinity of PEEK components by laser-assisted material extrusion[J]. Journal of Materials Research, 2018, 33 (11): 1632-1641. [92] LUO M, TIAN X, SHANG J. Impregnation and interlayer bonding behaviours of 3D-printed continuous carbon-fiber-reinforced poly-ether-ether-ketone composites[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 130-138. [93] LUO M, TIAN X Y, SHANG J F, et al. Bi-scale interfacial bond behaviors of CCF/PEEK composites by plasma-laser cooperatively assisted 3D printing process[J]. Composites Part A: Applied Science and Manufacturing, 2020, 131: 105812. |