[1] 焦健, 齐哲, 吕晓旭, 等. 航空发动机用陶瓷基复合材料及制造技术[J]. 航空动力, 2019(5): 17-21. [2] 陆有军, 王燕民, 吴澜尔. 碳/碳化硅陶瓷基复合材料的研究及应用进展[J]. 材料导报, 2010(6): 24. [3] HENNING F, MOELLER E. Handbuch Leichtbau: Methoden, Werkstoffe, Fertigung[M]. Carl Hanser Verlag GmbH & Co.KG, 2011: 393-411. [4] FAHRENHOLTZ W G, HILMAS G E, TALMY I G, et al. Refractory diborides of zirconium and hafnium[J]. Journal of the American Ceramic Society, 2007(90): 1347-1364. [5] DESMAISON M, ALEXANDRE N, DESMAISON J. Comparison of the oxidation behaviour of two dense hot isostatically pressed tantalum carbide (TaC and Ta2C) materials[J]. Journal of the European Ceramic Society, 1997(17): 1325-1334. [6] AHLEN N, JOHNSSON M, NYGREN M. Oxidation behaviour of TaxTi1-xC and TaxTi1-xCyN1-y whiskers[J]. Thermochimica Acta, 1999(336): 111-120. [7] OPEKA M, TALMY I, WU J, et al. Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds[J]. Journal of the European Ceramic Society, 1999(19): 2405-2414. [8] REZAI A, FAHRENHOLTZ W G, HILMAS G E. Evolution of structure during the oxidation of zirconium diboride-silicon carbide in air up to 1 500 degrees C[J]. Journal of the European Ceramic Society, 2007(27): 2495-2501. [9] ZIMMERMANN J W, HILMAS G E, FAHRENHOLTZ W G, et al. Fabrication and properties of reactively hot pressed ZrB2-SiC ceramics[J]. Journal of the European Ceramic Society, 2007(27): 2729-2736. [10] FERRO D. Pulsed laser deposited hard TiC, ZrC, HfC and TaC films on titanium: Hardness and an energy-dispersive X-ray diffraction study[J]. Surface & Coatings Technology, 2008(202): 1455-1461. [11] KATOH Y, VASUDEVAMURTHY G, NOZAWA T, et al. Properties of zirconium carbide for nuclear fuel applications[J]. Journal of Nuclear Materials, 2013(441): 718-742. [12] 吕晓旭, 杨金华,焦健. PIP工艺制备BN界面层及其微观结构研究[C]//中国复合材料学会. 第三届中国国际复合材料科技大会论文集. 北京: 中国复合材料学会, 2017: 740-746. [13] 刘虎, 杨金华, 焦健. 航空发动机用连续SiCf/SiC复合材料制备工艺及应用前景[J]. 航空制造技术, 2017(16): 90-95. [14] 杨金华, 吕晓旭, 焦健. 碳化硅陶瓷基复合材料界面层技术研究进展[J]. 航空制造技术, 2018(9): 61. [15] 吕晓旭. SiCf/SiC复合材料氮化硼(BN)界面层及其复合界面层研究进展[J]. 航空材料学报, 2019(39): 90-95. [16] JACQUES S, VINCENT H, VINCENT C, et al. Multilayered BN coatings processed by a continuous LPCVD treatment onto Hi-Nicalon fibers[J]. Journal of Solid State Chemistry, 2001(162): 358-363. [17] 王震. Cf/SiC-BN复合材料制备及性能[C]//2006年材料科学与工程新进展——“2006北京国际材料周”论文集. 北京: 化学工业出版社, 2006: 117-120. [18] ABDOLLAHI A, EHSANI N, VALEFI Z. Thermal shock resistance and isothermal oxidation behavior of C/SiC-SiC nano functionally gradient coating on graphite produced via reactive melt infiltration (RMI)[J]. Materials Chemistry and Physics, 2016(182): 49-61. [19] ABDOLLAHIA, EHSANI N. C/SiC gradient oxidation protective coating on graphite by modified reactive melt infiltration method: Effects of processing parameters on transition interface thickness and high-temperature anti-oxidation behavior[J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2017(48a): 265-278. [20] LEE K N. Environmental barrier coatings for SiCf/SiC[M]. New York: John Wiley & Sons, Inc, 2015. [21] ZHU D. Aerospace ceramic materials: Thermal, environmental barrier coatings and SiC/SiC ceramic matrix composites for turbine engine aplications[C]//Nasa Glenn. 13th Pacific Rim conference on Ceramic and Glass Technology. Ohio: Nasa Glenn, 2018. [22] KISER J D, GRADY J E, BHATT R T, et al. Overview of CMC (Ceramic Matrix Composite) Research[R]. Washington: NASA Glenn Research Center, 2016. [23] ZHU D, HARDER B, BHATT R, KISER D, et al. Advanced environmental barrier coating development for SiC-SiC ceramic matrix composite components[C]//American Ceramic Society. Ceramic Expo. Ohio: American Ceramic Society, 2017. [24] ZHU D. Advanced environmental barrier coating development for SiC-SiC ceramic matrix composite components[C]//Nasa Glenn. 12th Pacific Rim Conference on Ceramic and Glass Technology. Hawaii: Nasa Glenn, 2017: 44. [25] KIM T T, MALL S, ZAWADA L P. Fatigue behavior of Hi-Nicalon type-STM/BN/SiC ceramic matrix composites[J]. Combustion Environment International Journal of Applied Ceramic Technology, 2011(8): 261-272. [26] ZHU D, LEE K N, MILLER R A. Thermal gradient cyclic behavior of a thermal/environmental barrier coating system on sic/sic ceramic matrix composites[C]//ASME. ASME TURBO EXPO. Rotterdam: ASME, 2002. [27] APPLEBY M, MORSCHER G, ZHU D. Damage characterization of EBC-SiC/SiC ceramic matrix composites under imposed thermal gradient testing[C]//American Ceramic Society. 38th International Conference on Advanced Ceramics and Composites. Daytona beach: American Ceramic Society, 2014. [28] ZHU D, EVANS L J, MCCUE T R, et al. Microstructure evolution and durability of advanced environmental barrier coating systems for SiC/SiC ceramic matrix composites[C]//Nasa Glenn. Materials Science and Technology Conference. Xi′an: Nasa Glenn, 2017. [29] ZHU D. Development and property evaluation of selected HfO2-Silicon and rare earth-silicon based bond coats and environmental barrier coating systems for SiC/SiC ceramic matrix composites[C]//American Ceramic Society. 9th International Conference on High Temperature Ceramic Matrix Composites. Toronto: American Ceramic Society,2016. [30] ZHU D, FARMER S, MCCUE T R, et al. Environmental stability and oxidation behavior of HfO2-Si and YbGd(O) based environmental barrier coating systems for SiC/SiC ceramic matrix composites[C]//American Ceramic Society. 41stInternational Conference and Expo on Advanced Cermaics and Composites. Ohio: American Ceramic Society,2017. [31] HURST J B. Overview of NASA transformational tools and technologies project′s 2 700 ℉ CMC/EBC technology challenge[C]//Nasa Glenn. Advanced Ceramic Matrix Composites: Science and Technology of Materials, Design, Applications, Performance and Integration Conference. Cleveland, OH: Nasa Glenn, 2017. [32] SHYNE R. Advanced ceramic materials for aerospace propulsion and power[C]//American Ceramic Society. Ceramic Expo. Tokyo: American Ceramic Society, 2016. [33] OKAMURA K. Ceramic fibersfrom polymer precursors[J]. Composites, 1987(18): 107-120. [34] CHAWLA K K, CHAWALA N. Fibrous reinforcements for composites[J]. Comprehensive Composite Materials Ⅱ, 2018(1): 1-12. [35] ICHIKAWA H, ISHIKAWA T. Silicon carbide fibers (Organometallic Pyrolysis)[J]. Comprehensive Composite Materials Ⅱ, 2000(69): 107-145. [36] YAJIMA S. Simple synthesis of continuous SiC fiber with high-tensile strength[J]. Chemistry Letters, 1976, 551-554. [37] YAJIMA S, OKAMURA K, HAYASHI J, et al. Synthesis of continuous SiC fibers with high-tensile strength[J]. Journal of the American Ceramic Society, 1976(59): 324-327. [38] LIPOWITZ J, RABE J A, NGUYEN K T, et al. Structure and properties of polymer-derived stoichiometric SiC fiber[J]. Ceramic Engineering and Science Proceedings, 1995(16): 324-327. [39] SACKS M D, MORRONE A A, SCHEIFFELE G W. et al. Characterization of polymer-derived silicon carbide fibers with low oxygen content, near-stoichiometric composition, and improved thermochemical stability[J]. Ceramic Engineering and Science Proceedings, 1995(16): 324-327. [40] WAWNER F E. Boron and silicon carbide fibers (CVD)[J]. Comprehensive Composite Materials Ⅱ, 2018(1): 167-186. [41] KUMAGAWA K K, YAMAOKA H, SHIBUYA M, et al. Thermal stability and chemical corrosion resistance of newly developed continuous Si—Zr—C—O tyranno fiber[J]. Ceramic Engineering and Science Proceedings, 1997(18): 113-118. [42] ISHIKAWA T, KOHTOKU Y, KUMAGAWA K, et al. High-strength alkali-resistant sintered SiC fibre stable to 2,200 degrees C[J]. Nature, 1998(391): 113-118. [43] BALDUS H P. Key engineering materials Vol. 127-131[M]. Graz: Trans Tech Publications Ltd, 1997. [44] 曹适意. KD系列连续碳化硅纤维组成、结构与性能关系研究[M]. 湖南: 国防科学技术大学, 2017. [45] 袁钦, 宋永才. 连续SiC纤维和SiCf/SiC复合材料的研究进展[J]. 无机材料学报, 2016(31): 113-118. [46] KAKIMOTO K, SHIMOO T, OKAMURA K. The oxidation behavior of a Si—Ti—C—O fiber with a low oxygen content[J]. Journal of the Ceramic Society of Japan, 1995(103): 557-562. [47] 吴芸紫, 简科, 谢征芳. 烧结温度对SiC纤维结构及性能的影响[J]. 硅酸盐学报, 2016(44): 397-402. [48] 冯春祥, 范小林, 宋永才. 耐高温多晶SiC纤维的研制—(Ⅰ)聚碳硅烷纤维的氨化过程及其机理研究[C]//第十一届全国复合材料学术会议论文集. 合肥: 中国科技大学出版社, 2000: 8. [49] 袁钦, 宋永才. SiCxOy相分解方式对SiCO(Al)纤维烧结致密化的影响[J]. 无机材料学报, 2016(31): 397-402. [50] JASON P, CAREY E. Handbook of advances in braided composite materials[M]. Amsterdam: Elsevier Publisher, 2017. [51] JACQUES S, GUETTE A, LANGLAIS F, et al. C(B) materials as interphases in SiC/SiC model micro-composites[J]. Journal of Materials Science, 1997(32): 983-988. [52] SUN E Y, NUTT S R, BRENNAN J J. High-temperature tensile behavior of a boron nitride-coated silicon carbide-fiber glass-ceramic composite[J]. Journal of the American Ceramic Society, 1996(79): 1521-1529. [53] ZHU D. Calcium-magnesium-alumino-silicates(CMAS) reaction and degradation mechanisms of advanced environmental barrier coatings[J]. Surface & Coatings Technology, 2013(237): 79-97. [54] 沙建军, 代吉祥, 张兆甫. 纤维增韧高温陶瓷基复合材料(Cf, SiCf/SiC)应用研究进展[J]. 航空制造技术, 2017 (19): 16-32. [55] 董绍明, 胡建文, 梁子玉. 锯片基材75Cr1钢的热处理工艺及其组织性能[J]. 金属热处理, 2021(9): 193-198. [56] 杨金华, 朗旭东, 贺宜红, 等. 熔融渗硅对不同类型C/C复合材料微观结构及性能的影响[J]. 宇航材料工艺, 2021(3): 54-59. [57] GHOSH S K. Composite materials handbook[M]. New York: SAE International, 2002. [58] RICHERSON D W. Composites engineering handbook[M]. Mallic: Marcel-Dekker Inc, 1997. [59] LEHMAN R L, EL-RAHAIBY S K, WACHTMAN J B. Handbook on continuous fiber reinforced ceramic matrix composites[M]. Purdue: Purdue Research Foundation, 1995. [60] RICCARDI B, TRENTINI E, LABANTI M, et al. Characterization of commercial grade Tyranno SA/CVI-SiC composites[J]. Journal of Nuclear Materials, 2007: 367-370, 672-676. [61] 张立同, 成来飞, 许永东. 新型碳化硅陶瓷基复合材料的研究进展[J]. 航空制造技术, 2003(1): 24-32. [62] 罗潇, 徐友良, 郭小军, 等. 涡轮发动机用陶瓷基复合材料涡轮转子研究进展[J]. 推进技术, 2021(1): 230-240. [63] MORSCHER G N, SINGH M, KISER J D, et al. Modeling stress-dependent matrix cracking and stress-strain behavior in 2D woven SiC fiber reinforced CVI SiC composites[J]. Composites Science and Technology, 2007(67): 1009-1017. [64] 肖鹏, 徐永东, 张立同, 等. 连续同步复合法快速制备C/SiC复合材料[J]. 航空学报, 2001(2): 125-129. [65] 李俊红, 朱时珍, 于晓东, 等. 自加热化学气相法制备连续碳纤维增强碳化硅复合材料[J]. 材料工程, 2002(7): 29-32. [66] 刘文川, 邓景屹. 热结构复合材料的低成本制备[J]. 材料导报, 2000(4): 59-60. [67] 焦健, 杨金华, 李宝伟. 熔渗法制备陶瓷基复合材料的研究进展[J]. 航空制造技术, 2015(S2): 1-6. [68] BANASAL N P. Handbook of ceramic composites[M]. Kluwer: Kluwer Academic Publishers, 2005. [69] SMITH P, LEMSTRA P J. Ultra-drawing of high molecular weight polyethylene cast from solution[J]. Colloid and Polymer Science, 1980(7): 891-894. [70] ZHANG R, DENG H, VALENCA R, et al. Carbon nanotube polymer coatings for textile yarns with good strain sensing capability[J]. Sensors and Actuators A: Physical, 2012(179): 83-91. [71] BREWER D. HSR/EPM combustor materials development program[J]. Materials Science and Engineering: A, 1999(261): 284-291. [72] DICARLO J A, BANSAL N P. Fabrication routes for continuous fiber-reinforced ceramic composites (CFCC)[M]. Washington: NASA, 1998. [73] OPILA E J, HANN R. Para-linear oxidation of CVD SiC in water vapor[J]. Journal of the American Ceramic Society, 1997(1): 197-205. [74] SMIALEK J L, ROBINSON R C, OPILA E J, et al. SiC and Si3N4 scale volatility under combustor conditions[J]. Advanced Composite Materials, 1999(8): 33-45. [75] ROODE M, PRICE J R, J. KIMMEL N, et al. Ceramic matrix composite combustor liners: A summary of field evaluations[J].Journal of Engineering for Gas Turbines & Power, 2007(1): 21-30. [76] ROBINSON R C, SMIALEK J L. SiC recession caused by SiO2 scale volatility under combustor conditions: Ⅰ, Experimental results and empirical model[J]. Journal of the American Ceramic Society, 1999(7): 17-25. [77] LEE K N. Current status of environmental barrier coatings for Si-based ceramics[J]. Surface and Coatings Technology, 2000, 133-134: 1-7. [78] EATON H E, LINSEY G, DINSEY K L, et al. EBC protection of SiC/SiC composites in the gas turbine combustion environment[C]//ASME. Turbo Expo 2000: Power for Land, Sea, and Air. Munich: ASME, 2000. |