[1] HOU Y, TANIGUCHI K, MAILLY L, et al. Vacuum-assisted resin infusion molding (VARIM) processing for thick-section composite laminates in wind turbine blades[C]//American Society for Composites. Proceedings of the American Society for Composites 27th Technical Conference. Arlington: DEStech, 2012: 1-3. [2] BICKERTON S, GOVIGNON Q, KELLY P. Resin infusion/liquid composite moulding (LCM) of advanced fibre-reinforced polymer (FRP)[M]//Advanced fibre-reinforced polymer (FRP) composites for structural applications. Cambridge: Woodhead Publishing, 2013: 155-186. [3] 梅启林, 冀运东, 陈小成, 等. 复合材料液体模塑成型工艺与装备进展[J]. 玻璃钢/复合材料, 2014(9): 52-62. [4] SEEMANN I, WILLIAM H. Plastic transfer molding techniques for the production of fiber reinforced plastic structures: US4902215A[P]. 1990-2-20[2022-09-22]. [5] 肖军, 李勇, 李建龙. 自动铺放技术在大型飞机复合材料结构件制造中的应用[J]. 航空制造技术, 2008(1): 50-53. [6] KLOMP-DE B R. Automated preform fabrication by dry tow placement[C]//University of Belgrade Faculty of Transport and Traffic Engineering. Shaping Climate Friendly Transport in Europe: Key Findings & Future Directions REACT2011 proceedings. Beograd: University of Belgrade-The Faculty of Transport and Traffic Engineering, 2011: 69-80. [7] ZHAO C, XIAO J, HUANG W, et al. Layup quality evaluation of fiber trajectory based on prepreg tow deformability for automated fiber placement[J]. Journal of Reinforced Plastics and Composites, 2016, 35(21): 1576-1585. [8] FELTIN D, GLIESCHE K. Preforms for composite parts made by tailored fibre placement[C]//Australian Composite Structures Society. Proceedings of 11 International Conference on Composite Material. Gold Coast: Australian Composite Structures Society, 1997: 17-26. [9] ASSADI M, FIELD T. AFP Processing of dry fiber carbon materials (DFP) for improved rates and reliability[J]. SAE Technical Paper, 2020(2): 1-6. [10] 赵安安, 王林文, 王浩军, 等. 复合材料液体成型技术的航空应用[J]. 工程塑料应用, 2018, 46(4): 145-150. [11] ZHANG L, WANG X, PEI J, et al. Review of automated fibre placement and its prospects for advanced composites[J]. Journal of Materials Science, 2020, 55(17): 7121-7155. [12] BELHAJ M, DELEGLISE M, COMAS-CARDONA S, et al. Dry fiber automated placement of carbon fibrous preforms[J]. Composites Part B: Engineering, 2013, 50: 107-111. [13] AZIZ A R, ALI M A, ZENG X, et al. Transverse permeability of dry fiber preforms manufactured by automated fiber placement[J]. Composites Science and Technology, 2017, 152: 57-67. [14] LUKASZEWICZ D H J A, WARD C, POTTER K D. The engineering aspects of automated prepreg layup: History, present and future[J]. Composites Part B: Engineering, 2012, 43(3): 997-1009. [15] 韦生文, 薛伟锋, 王亚锋, 等. 三维编织预成型体液体成型技术[C]//中国航空学会. 第二十一届全国复合材料学术会议(NCCM-21)论文集. 呼和浩特: 中国航空学会, 2020: 52-57. [16] CHEN X, TAYLOR L W, TSAI L J. An overview on fabrication of three-dimensional woven textile preforms for composites[J]. Textile Research Journal, 2011, 81(9): 932-944. [17] 周雷敏, 孙沛. 波音787客机的复合材料国际化制造[J]. 高科技纤维与应用, 2013, 38(2): 57-61. [18] MARSH G. Aero engines lose weight thanks to composites[J]. Reinforced Plastics, 2012, 56(6): 32-35. [19] MOUNTASIR A, HOFFMANN G, CHERIF C, et al. Competitive manufacturing of 3D thermoplastic composite panels based on multi-layered woven structures for lightweight engineering[J]. Composite Structures, 2015, 133: 415-424. [20] ENDRUWEIT A, LONG A C. Analysis of compressibility and permeability of selected 3D woven reinforcements[J]. Journal of composite materials, 2010, 44(24): 2833-2862. [21] UMER R, ALHUSSEIN H, ZHOU J, et al. The mechanical properties of 3D woven composites[J]. Journal of Composite Materials. 2017, 51(12): 1703-1716. [22] ALHUSSEIN H, UMER R, RAO S, et al. Characterization of 3D woven reinforcements for liquid composite molding processes[J]. Journal of Materials Science, 2016, 51(6): 3277-3288. [23] GEOFFRE A, WIELHORSKI Y, MOULIN N, et al. Influence of intra-yarn flows on whole 3D woven fabric numerical permeability: From Stokes to Stokes-Darcy simulations[J]. International Journal of Multiphase Flow, 2020, 129: 103349. [24] HUSMANN C H, SHEU C H, SHIMAZU D M. Co-cured resin transfer molding manufacturing method: US7374715B2[P]. 2008-5-20 [2022-09-22]. [25] SCHWARTZ M. Innovations in materials manufacturing, fabrication, and environmental safety[M]. Boca Raton: CRC press, 2010: 507-508. [26] TATUM S. VARTM cuts costs[J]. Reinforced Plastics, 2001, 45(5): 22. [27] NAGAO Y, IWAHORI Y, HIRANO Y, et al. Low cost composite wing structure manufacturing technology development program in JAXA[C]// Japan Society for Composite Materials. 16th ICCM International Conferences on Composite Materials. Kyoto: Japan Society for Composite Materials, 2007: 1-6. [28] AKIN M, OZTAN C, AKIN R, et al. Co-cured manufacturing of multi-cell composite box beam using vacuum assisted resin transfer molding[J]. Journal of Composite Materials, 2021, 55(30): 4469-4480. [29] MA X, GU Y, LI Y, et al. Interlaminar properties of carbon fiber composite laminates with resin transfer molding/prepreg co-curing process[J]. Journal of Reinforced Plastics and Composites, 2014, 33(24): 2228-2241. [30] XU W, GU Y, LI M, et al. Co-curing process combining resin film infusion with prepreg and co-cured interlaminar properties of carbon fiber composites[J]. Journal of Composite Materials, 2014, 48(14): 1709-1724. |