[1] 李涛, 丁文文. 基于生态环保视域下复合型材料的应用研究[J]. 信息记录材料, 2021(6): 4-6. [2] 袁月. 碳纤维复合材料内部缺陷检测方法研究[D]. 绍兴: 绍兴文理学院, 2021. [3] 杨红娟, 杨正岩, 杨雷, 等. 碳纤维复合材料损伤的超声检测与成像方法研究进展[J]. 复合材料学报, 2023, 40(8): 4295-4317. [4] 陈嘉威. 低密度材料的多角度DR图像夹杂检测和应用研究[D]. 重庆: 重庆大学, 2020. [5] 胡业发, 孟由, 张锦光, 等. 含夹杂缺陷碳纤维复合材料层压板的无损检测与评估研究[J]. 复合材料科学与工程, 2023(2): 94-100. [6] 薛林, 王云森, 陆尧, 等. 基于深度学习的铸件DR图像缺陷检测[J]. 仪表技术与传感器, 2023(3): 94-97. [7] 赵先圣, 冯鹏, 沈宽, 等. 基于深度学习的铁道车辆铸件X射线DR图像缺陷检测算法研究[J]. 中国体视学与图像分析, 2021, 26(3): 310-320. [8] 蔡彪, 沈宽, 付金磊, 等. 基于Mask R-CNN的铸件X射线DR图像缺陷检测研究[J]. 仪器仪表学报, 2020(3): 61-69. [9] HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//IEEE International Conference on Computer Vision. Venice, Italy: IEEE Computer Society, 2017: 2980-2988. [10] 徐艳丽, 谭剑. 基于非线性反锐化掩膜的DR图像边缘增强[J]. 中国医学物理学杂志, 2010(4): 2013-2015. [11] CHRISTOPHER D, SIMON P. A novel approach for mammogram enhancement using nonlinear unsharp masking and L0 gradient minimization[J]. Procedia Computer Science, 2020, 171: 1848-1857. [12] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [13] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE Computer Society, 2016: 770-778. [14] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE Computer Society, 2017: 936-944. [15] 王森, 杨克俭. 基于双线性插值的图像缩放算法的研究与实现[J]. 自动化技术与应用, 2008(7): 44-45. [16] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[C]//European Conference on Computer Vision. Zürich, Switzerland: Springer International Publishing, 2014: 740-755. [17] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics. Minnesota,Minneapolis, USA: Association for Computational Linguistics, 2019: 4171-4186. |