[1] 沈真, 张晓晶. 复合材料飞机结构强度设计与验证概论[M]. 上海:上海交通大学出版社, 2011: 1-4. [2] MARSH G. Airbus A350 XWB update[J]. Reinforced Plastics,2010, 54(6): 20-24. [3] ZHU S Q, CHAI G B. Low-velocity impact response of fibre-metal laminates-experimental and finite element analysis[J]. Composites Science and Technology, 2012, 72(15): 1793-1802. [4] DEFRANCISCI G K. High energy wide area blunt impact on composite aircraft structures[D]. La Jolla(CA): University of California San Diego, 2013. [5] KIM H, DEFRANCISCI G K, CHEN Z M. Ground vehicle blunt impact damage formation to composite aircraft structures[J]. Advanced Composite Materials, 2014, 23(1): 53-71. [6] CAPRIOTTI M, KIM H E, SCALES F L D, et al. Non-destructive inspection of impact damage in composite aircraft panels by ultrasonic guided waves and statistical processing[J]. Materials, 2017, 10(6): 616-628. [7] KIM H, HALPIN J C, DEFRANCISCI G K. Impact damage of composite structures[M]//POCHIRAJU K V, TANDON G P, SCHOEPP-NER G A. Long-Term Durability of Polymeric Matrix Composites.Springer, Boston: MA, 2011: 143-180. [8] 任涛, 彭昂, 吴大可, 等. 冲击位置对复合材料加筋板冲击后压缩行为影响试验[J]. 复合材料学报, 2022, 39(2): 788-801. [9] ZOU J C, LEI Z K, BAI R X, et al. Damage and failure analysis of composite stiffened panels under low-velocity impact and compression after impact[J]. Composite Structures, 2021, 262: 111333. [10] 刘湘云, 刘衰财, 张洪峰. 复合材料飞机结构的低速冲击损伤特性影响因素研究[J]. 机械设计与制造工程, 2016, 45(1): 78-81. [11] 孙子恒, 王继辉, 倪爱清, 等. 不同铺层复合材料夹芯结构低速冲击与冲击后剩余强度研究[J]. 复合材料科学与工程, 2020(11): 102-110. [12] 王富生, 张钧然, 郑涵天, 等. 复合材料加筋壁板鸟撞动响应分析[J]. 振动与冲击, 2013, 32(4): 6-9, 20. [13] 陈琨, 解江, 裴惠, 等. 明胶鸟弹撞击复合材料蜂窝夹芯板试验[J]. 复合材料学报, 2020, 37(2): 328-335. [14] 冯荣欣, 邢运, 倪阳, 等. 民用客机短舱进气道唇口抗鸟撞试验研究与仿真分析[J]. 复合材料科学与工程, 2022(9): 102-108. [15] HEIMBS S, BROUCKE B V D, KERGOMARD Y D, et al. Rubber impact on 3D textile composites[J]. Applied Composite Materials, 2012, 19(3/4): 275-295. [16] MIKULIK Z, HAASE P. Composite damage metrics and inspection[R]. Hambury: EASA, 2010. [17] CHEN Z M. Experimental and numerical investigation of wide area blunt impact damage to composite aircraft structure[D]. La Jolla(CA): University of California San Diego, 2015. [18] ZHOU J J, WEN P H, WANG S N. Finite element analysis of a modified progressive damage model for composite laminates under low-velocity impact[J]. Composite Structures, 2019, 225: 111333. [19] CHENG Z Q, TAN W, XIONG J J. Progressive damage modelling and fatigue life prediction of plain-weave composite laminates with low-velocity impact damage[J]. Composite Structures, 2021, 273: 114262. [20] CAMANHO P P. Numerical simulation of mixed-mode progressive delamination in composite materials[J]. Journal of Composite Materials, 2003, 37(16): 1415-1438. [21] FENG D, AYMERICH F. Damage prediction in composite sandwich panels subjected to low-velocity impact[J]. Composites Part A: Applied Science and Manufacturing, 2013, 52: 12-22. [22] HASHIN Z, ROTEM A. A fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials, 1973, 7(4): 448-464. [23] HASHIN Z. Fatigue failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47(714): 846-852. [24] CAMANHO P P, DAVILA C G. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials[R]. Washington: NASA, 2002. [25] KIM B, LEE S B, LEE J, et al. A comparison among Neo-Hookean model, Mooney Rivlin model, and Ogden model for chloroprene rubber[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(5): 759-764. [26] CHEN Z M, KIM H, DEFRANCISCI G K. Experimental and modeling investigation of blunt impact to stringer-reinforced composite panels[C]//Proceedings of the American Society for Composites Twenty-Eighth Technical Conference: American Society for Composites Twenty-Eighth technical conference, September 9-11, 2013, State College, PA. 2013: 1-20. [27] GREENHALGH E, MEEKS C, CLARKE A, et al. The effect of defects on the performance of post-buckled CFRP stringer-stiffened panels[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(7): 623-633. |