[1] 钟明建, 胡炜杰, 廖晓恬, 等. 碳纤维复合材料部件加工技术现状及发展趋势[J]. 复合材料科学与工程, 2022(5): 110-119. [2] 杨飒, 周伟, 姬晓龙, 等. 纳米纤维素对CFRP界面及损伤演化行为的影响[J]. 复合材料科学与工程, 2022(5): 71-77. [3] KOLEDNIK O, KASBERGER R, SISTANINIA M, et al. Development of damage-tolerant and fracture-resistant materials by utilizing the material inhomogeneity effect[J]. Journal of Applied Mechanics, 2019, 86(11): 1-12. [4] NING N, WANG M, ZHOU G, et al. Effect of polymer nanoparticle morphology on fracture toughness enhancement of carbon fiber reinforced epoxy composites[J]. Composites Part B: Engineering, 2022, 234: 1-8. [5] 陈官, 马传国, 付泽浩, 等. 磁场作用下氧化石墨烯包覆羟基氧化铁增强碳纤维/环氧树脂复合材料的层间断裂韧性[J]. 航空材料学报, 2022, 42(3): 89-96. [6] 陈官, 马传国, 王静, 等. 氧化石墨烯包覆羟基氧化铁协同增强环氧树脂的断裂韧性[J]. 工程塑料应用, 2020, 48(6): 8-13. [7] WANG J, MA C, CHEN G, et al. Interlaminar fracture toughness and conductivity of carbon fiber/epoxy resin composite laminate modified by carbon black-loaded polypropylene non-woven fabric interleaves[J]. Composite Structures, 2020, 234: 1-9. [8] SASIDHARAN S, ANAND A. Epoxy-based hybrid structural composites with nanofillers: A review[J]. Industrial and Engineering Chemistry Research, 2020, 59(28): 12617-12631. [9] 邢亮, 吴宁, 焦亚男. 静电纺纳米纤维对复合材料层间增强增韧的研究进展[J]. 材料导报, 2013, 27(15): 63-66, 77. [10] BECKERMANN G W, PICKERING K L. Mode Ⅰ and mode Ⅱ interlaminar fracture toughness of composite laminates interleaved with electrospun nanofibre veils[J]. Composites Part A: Applied Science and Manufacturing, 2015, 72: 11-21. [11] SONG Y, ZHENG N, DONG X L, et al. Flexible varboxylated CNT/PA66 nanofibrous mat interleaved carbon fiber/epoxy laminates with improved interlaminar fracture toughness and flexural properties[J]. Industrial & Engineering Chemistry Research, 2020, 59(3): 1151-1158. [12] 付泽浩, 向阳, 马传国, 等. FeOOH纳米粒子协同聚偏氟乙烯电纺纤维膜插层增强碳纤维复合材料层间断裂韧性[J]. 复合材料学报, 2021, 39(4): 1582-1591. [13] ESKIZEYBEK V, YAR A, AVCI A. CNT-PAN hybrid nanofibrous mat interleaved carbon/epoxy laminates with improved mode Ⅰ interlaminar fracture toughness[J]. Composites Science and Technology, 2018, 157: 30-39. [14] DONG M, ZHANG H, TZOUNIS L, et al. Multifunctional epoxy nanocomposites reinforced by two-dimensional materials: A review[J]. Carbon, 2021, 185: 57-81. [15] SZELUGA U, KUMANEK B, TRZEBICKA B. Synergy in hybrid polymer/nanocarbon composites. A review[J]. Composites Part A: Applied Science and Manufacturing, 2015, 73: 204-231. [16] SAGHAFI H, BRUGO T, MINAK G, et al. The effect of PVDF nanofibers on mode-Ⅰ fracture toughness of composite materials[J]. Composites Part B: Engineering, 2015, 72: 213-216. [17] Standard test method for mode Ⅰ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D5528-01: 2001[S]. [18] Standard test method for determination of the mode Ⅱ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D7905/D7905-19e1: 2019[S]. [19] 王刚, 董佩文, 张威, 等. 添加纳米颗粒对溴化锂溶液表面张力的影响及其机理分析[J]. 有色金属工程, 2021, 11(4): 26-32. [20] 左晓飞, 张娇娇, 余改丽, 等. 溶液性质交互作用对静电纺纳米纤维形态的影响[J]. 东华大学学报: 自然科学版, 2018, 44(1): 1-9. [21] 张兴涛, 吴广宁, 杨雁, 等. 无机纳米掺杂对聚酰亚胺绝缘性能影响[J]. 高压电器, 2018, 54(4): 164-176. [22] GHAFFARIAN S R, BRUGO T M, MINAK G, et al. The effect of nanofibrous membrane thickness on fracture behaviour of modified composite laminates-A numerical and experimental study[J]. Composites Part B: Engineering, 2016, 101B: 116-123. [23] HWAFAI H, YUDHANTO A, LUBINEAU G, et al. An experimental approach that assesses in-situ micro-scale damage mechanisms and fracture toughness in thermoplastic laminates under out-of-plane loading[J]. Composite Structures, 2018, 207: 546-559. [24] PRASAD V, SEKAR K, VARGHESE S, et al. Enhancing mode Ⅰ and mode Ⅱ interlaminar fracture toughness of flax fibre reinforced epoxy composites with nano TiO2[J]. Composites Part A: Applied Science and Manufacturing, 2019, 124: 105505-105516. [25] DAMODARAN V, CASTELLANOS A G, MILOSTAN M, et al. Improving the mode-Ⅱ interlaminar fracture toughness of polymeric matrix composites through additive manufacturing[J]. Materials & Design, 2018, 157: 60-73. [26] DAELEMANS L, HEIJDEN S, DE BAERE I, et al. Using aligned nanofibres for identifying the toughening micromechanisms in nanofibre interleaved laminates[J]. Composites Science and Technology, 2016, 124: 17-26. |