复合材料科学与工程 ›› 2024, Vol. 0 ›› Issue (7): 16-22.DOI: 10.19936/j.cnki.2096-8000.20240728.002

• 基础研究 • 上一篇    下一篇

基于半解析法的功能梯度悬臂梁力学行为研究

张龙, 刘秉斌*, 范钧滔   

  1. 中国空气动力研究与发展中心 设备设计与测试技术研究所,绵阳 621000
  • 收稿日期:2023-07-07 出版日期:2024-07-28 发布日期:2024-08-08
  • 通讯作者: 刘秉斌(1989—),男,硕士,工程师,研究方向为风洞结构设计,liubingbin@cardc.cn。
  • 作者简介:张龙(1991—),男,博士,工程师,研究方向为飞行器结构设计。
  • 基金资助:
    国家自然科学基金(12172296)

Mechanical behavior investigation of the FGM cantilever beam based on the semi-analytical method

ZHANG Long, LIU Bingbin*, FAN Juntao   

  1. Facility Design and Instrumentation Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China
  • Received:2023-07-07 Online:2024-07-28 Published:2024-08-08

摘要: 功能梯度材料(Functionally Graded Material,FGM)物理性能优良,具有重要的应用价值,近些年来受到了越来越多的关注。本文发展了一种可用于功能梯度悬臂梁受力分析的半解析方法,该方法具有与解析法同等的计算精度,并且可用于材料性能梯度分布复杂情况下的悬臂梁结构受力分析。将该方法用于材料性能按线性梯度分布、指数梯度分布、复杂经验公式梯度分布的功能梯度悬臂梁受力分析,并与解析法、梯度有限元法、分层有限元法的计算结果进行了对比验证。研究结果表明,当高度和长度方向的积分点数分别为11个和21个时,半解析法和梯度有限元法计算的弯曲应力分布结果与解析解基本一致,分层有限元法计算的弯曲应力分布结果与解析解相差较大,相对误差大于10%。而对于挠度值分析,半解析法、梯度有限元法、分层有限元法的计算结果均与解析解非常接近,最大相对误差不超过1.0%。

关键词: 功能梯度材料, 悬臂梁, 半解析法, 有限元, 复合材料

Abstract: Functionally graded materials (FGM) possess excellent physical properties and have important applications, thus have received increasing attentions in recent years. In this paper, a semi-analytical method for mechanical behavior analysis of the FGM cantilever beam is developed, which has the same accuracy in contrast to the analytical method, and furthermore can be used for cantilever beam with complex material property gradation. The method is applied to the bending stress analysis of FGM cantilever beams with linear gradation, exponential gradation and complex empirical formula gradation. The computed results are compared with those of analytical method, graded finite element method (FEM) and layered FEM. The study shows that the bending stress distribution calculated by semi-analytical method and graded FEM is basically consistent with analytical solution on the condition that the numbers of integration points in height and longitude direction are respectively 11 and 21, whereas the bending stress distribution calculated by layered FEM deviate a lot from analytical solution up to 10%. For the analysis of deflection value, the calculated results of semi-analytical method, gradient FEM and layered FEM are all very close to analytical solution, with the maximum relative error within 1.0%.

Key words: FGM, cantilever beam, semi-analytical method, FEM, composites

中图分类号: