[1] 谷雨. 碳纤维增强聚合物复合材料在航空航天领域的研究进展[J]. 冶金与材料, 2023, 43(7): 118-120. [2] 张坤, 张丹, 邹瑞睿, 等. CFRP在汽车轻量化中的应用研究进展[J]. 工程塑料应用, 2022, 50(10): 154-158, 163. [3] 王婉君, 张鹏, 贺政豪, 等. 碳纤维复合材料压力容器的研究进展[J]. 现代化工, 2020, 40(1): 68-71. [4] 周锦地. 基于多尺度方法的碳纤维复合材料温度环境下力学行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2022. [5] 冀有志, 韦娟芳, 龚博安. 双马来酰亚胺树脂和环氧树脂复合材料在极端温度下的性能对比[J]. 空间电子技术, 2010, 7(3): 117-120, 126. [6] 方亚威. 不同温度作用下碳纤维复合材料筋的静力和抗冲击性能研究[D]. 长沙: 湖南大学, 2021. [7] 王亚丽, 杨琳, 孙龙, 等. 碳纤维织物增强铜基复合材料的显微结构及其热物理性能[J]. 材料科学与工程学报, 2020, 38(1): 153-157. [8] 龙巍, 郑学林, 臧建彬. 基于碳纤维复合材料热性能的研究进展综述[J]. 应用化工, 2019, 48(9): 2251-2255. [9] 李玥, 叶林, 赵晓文. 碳纤维增强环氧树脂复合材料盐雾腐蚀行为及其老化分子机制[J]. 高分子材料科学与工程, 2023, 39(5): 91-97. [10] 闫民杰. 碳纳米管改性碳纤维复合材料的抗辐射性能研究[D]. 天津: 天津工业大学, 2019. [11] SHRIVASTAVA R, SINGH K K. Interlaminar fracture toughness characterization of laminated composites: A review[J]. Polymer Reviews, 2020, 60(3): 542-593. [12] SIDDIQUE A, ABID S, SHAFIQ F, et al. Mode Ⅰ fracture toughness of fiber-reinforced polymer composites: A review[J]. Journal of Industrial Textiles, 2021, 50(8): 1165-1192. [13] MILLEN S L J, MURPHY A. Modelling and understanding edge glow effects on material failure resulting from artificial lightning strike[J]. Composite Structures, 2021, 278: 114651. [14] LEI Z, PAN R, SUN W, et al. Fatigue damage mechanisms and evolution of residual tensile strength in CFRP composites: Stacking sequence effect[J]. Composite Structures, 2024, 330: 117818. [15] 梁小林. 复合材料层合板冲击后的疲劳寿命研究[D]. 南京: 南京航空航天大学, 2016. [16] 赵天, 李营, 张超, 等. 高性能航空复合材料结构的关键力学问题研究进展[J]. 航空学报, 2022, 43(6): 63-105. [17] 张伟, 王彬文, 樊俊铃, 等. 基于多模式超声成像的CFRP冲击损伤无损表征与冲击后压缩强度预测[J]. 航空学报, 2023, 44(1): 302-312. [18] MEIREMAN T, DAELEMANS L, RIJCKAERT S, et al. Delamination resistant composites by interleaving bio-based long-chain polyamide nanofibers through optimal control of fiber diameter and fiber morphology[J]. Composites Science and Technology, 2020, 193: 108126. [19] 王长越, 邢素丽. 冲击损伤下航空复合材料修复技术研究进展[J]. 玻璃钢/复合材料, 2017(12): 91-98. [20] JI D, LIN Y, GUO X, et al. Electrospinning of manofibres[J]. Nature Reviews Methods Primers, 2024, 4(1): 1-21. [21] MAHATO B, LOMOV S V, SHIVERSKII A, et al. A review of electrospun nanofiber interleaves for interlaminar toughening of composite laminates[J]. Polymers, 2023, 15(6): 1380. [22] QUAN D, MISCHO C, LI X, et al. Improving the electrical conductivity and fracture toughness of carbon fibre/epoxy composites by interleaving MWCNT-doped thermoplastic veils[J]. Composites Science and Technology, 2019, 182: 107775. [23] QUAN D, BOLOGNA F, SCARSELLI G, et al. Mode-Ⅱ fracture behaviour of aerospace-grade carbon fibre/epoxy composites interleaved with thermoplastic veils[J]. Composites Science and Technology, 2020, 191: 108065. [24] BEYLERGIL B, DUMAN V. Enhancing mode-Ⅰ and mode-Ⅱ fracture toughness of carbon fiber/epoxy laminated composites using 3D-printed polyamide interlayers[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2024, 238(3): 578-591. [25] MARINO S G, KOT′ÁKOVÁ E K, CZÉL G. Development of pseudo-ductile interlayer hybrid composites of standard thickness plies by interleaving polyamide 6 nanofibrous layers[J]. Composites Science and Technology, 2023, 234: 109924. [26] LAN B, LIU Y, MO S, et al. Interlaminar fracture behavior of carbon fiber/polyimide composites toughened by interleaving thermoplastic polyimide fiber veils[J]. Materials, 2021, 14(10): 2695. [27] WU H, YU C, CHEN Y, et al. Preparation of polyimide nanofiber membranes and interlaminar toughness investigation of their toughened composites[J]. Nano, 2021, 16(12): 2150145. [28] ZHANG L, ZHANG X, WEI X, et al. Hydroxyl-functionalized block Co-polyimide enables simultaneously improved toughness and strength of tetrafunctional epoxy resin[J]. Composites Science and Technology, 2022, 230: 109787. [29] KLLLÇOĞLU M, BAT E, GÜNDÜZ G, et al. Fibers of thermoplastic polymer blends activate multiple interlayer toughening mechanisms[J]. Composites Part A: Applied Science and Manufacturing, 2022, 158: 106982. [30] WANG J, POZEGIC T R, XU Z, et al. Cellulose nanocrystal-polyetherimide hybrid nanofibrous interleaves for enhanced interlaminar fracture toughness of carbon fibre/epoxy composites[J]. Composites Science and Technology, 2019, 182: 107744. [31] NEISIANY R E, KHORASANI S N, NAEIMIRAD M, et al. Improving mechanical properties of carbon/epoxy composite by incorporating functionalized electrospun polyacrylonitrile nanofibers[J]. Macromolecular Materials and Engineering, 2017, 302(5): 1600551. [32] DAELEMANS L, VAN DER HEIJDEN S, DE BAERE I, et al. Damage-resistant composites using electrospun nanofibers: A multiscale analysis of the toughening mechanisms[J]. ACS Applied Materials Interfaces, 2016, 8(18): 11806-11818. [33] ZHU T, REN Z, XU J, et al. Damage evolution model and failure mechanism of continuous carbon fiber-reinforced thermoplastic resin matrix composite materials[J]. Composites Science and Technology, 2023, 244: 110300. [34] RUAN S, WEI S, GONG W, et al. Strengthening, toughening, and self-healing for carbon fiber/epoxy composites based on PPESK electrospun coaxial nanofibers[J]. Journal of Applied Polymer Science, 2021, 138(12): 50063. [35] QI W, LU C, CHEN P, et al. Electrochemical performances and thermal properties of electrospun poly (phthalazinone ether sulfone ketone) membrane for lithium-ion battery[J]. Materials Letters, 2012, 66(1): 239-241. [36] LI G, LI P, ZHANG C, et al. Inhomogeneous toughening of carbon fiber/epoxy composite using electrospun polysulfone nanofibrous membranes by in situ phase separation[J]. Composites Science and Technology, 2008, 68(3): 987-994. [37] FAROOQ U, SAKARINEN E, TEUWEN J, et al. Synergistic toughening of epoxy through layered poly (ether imide) with dual-scale morphologies[J]. ACS Applied Materials Interfaces, 2023, 15(45): 53074-53085. [38] CAI S, LI Y, LIU H Y, et al. Effect of electrospun polysulfone/cellulose nanocrystals interleaves on the interlaminar fracture toughness of carbon fiber/epoxy composites[J]. Composites Science and Technology, 2019, 181: 107673. [39] CHENG C, ZHANG C, ZHOU J, et al. Improving the interlaminar toughness of the carbon fiber/epoxy composites via interleaved with polyethersulfone porous films[J]. Composites Science and Technology, 2019, 183: 107827. [40] CHENG C, CHEN Z, HUANG Z, et al. Simultaneously improving mode Ⅰ and mode Ⅱ fracture toughness of the carbon fiber/epoxy composite laminates via interleaved with uniformly aligned pes fiber webs[J]. Composites Part A: Applied Science and Manufacturing, 2020, 129: 105696. |