[1] FU Y, YAO X. A review on manufacturing defects and their detection of fiber reinforced resin matrix composites[J]. Composites Part C: Open Access, 2022, 8: 100276. [2] WANG G, ZHANG L, XU X, et al. Real-time detection of barely visible defects on composite structures based on surface reconstruction[J]. Composite Structures, 2023, 311: 116852. [3] ZHAO Y, HU K, FU B, et al. Reliability analysis of composite laminate patch repaired structures based on response surface proxy model[J]. Composite Communication, 2023, 42: 101689. [4] ARENTS J, GREITANS M. Smart industrial robot control trends, challenges and opportunities within manufacturing[J]. Applied Sciences, 2022, 12(2): 937-957. [5] ZHAN Q, WANG X. Hand-eye calibration and positioning for a robot drilling system[J]. International Journal of Advanced Manufacturing Technology, 2012, 61(5): 691-701. [6] 薛宏, 罗群, 刘博锋, 等. 大飞机活动翼面机器人自动制孔应用研究[J]. 航空制造技术, 2019, 62(19): 86-91, 98. [7] 张一然, 国凯, 孙杰. 面向飞机复材大部件的工业机器人打磨工艺及装备研究[C]//中国力学学会固体力学专业委员会, 国家自然科学基金委员会数理科学部. 2018年全国固体力学学术会议摘要集(下), 2018: 1. [8] SUN G, ZHOU Z, LI G, et al. Development of an optical fiber-guided robotic laser ultrasonic system for aeronautical composite structure testing[J]. International Journal for Light and Electron Optics, 2016, 127(12): 5135-5140. [9] ZHANG L, WANG G, XU X, et al. Thermal-mechanical coupling numerical simulation and low damage analysis for drilling composite[J]. Composite Structures, 2023, 324: 117542. [10] MEI B, ZHU W. Accurate positioning of a drilling and riveting cell for aircraft assembly[J]. Robotics and Computer-Integrated Manufacturing, 2021, 69: 102112. [11] PENG H, WEI T, DONG M, et al. Robotic variable parameter accuracy compensation using space grid[J]. Robot, 2015, 37(3): 327-335. [12] BOBY R A, KLIMCHIK A. Combination of geometric and parametric approaches for kinematic identification of an industrial robot[J]. Robotics and Computer-Integrated Manufacturing, 2021, 71: 102142. [13] CAI Y, YUAN P, CHEN D, et al. A calibration method of industrial robots based on ELM[C]//2017 2nd International Conference on Advanced Robotics and Mechatronics (ICARM). IEEE, 70-75. [14] CHEN D, WANG T, YUAN P, et al. A positional error compensation method for industrial robot combining error similarity and radial basis function neural network[J]. Measurement Science and Technology, 2019, 30(12): 125010. [15] LI B, TIAN W, ZHANG C, et al. Positioning error compensation of an industrial robot using neural networks and experimental study[J]. Chinese Journal of Aeronautics, 2022, 35(2): 346-360. [16] CHEN D, LV P, XUE L, et al. Positional error compensation for aviation drilling robot based on Bayesian linear regression[J]. Engineering Applications of Artificial Intelligence, 2024, 127: 107263. [17] SURESH M, SANDERS A, PRAJAPATI P, et al. Composite sandwich repair using through-thickness reinforcement with robotic hand micro-drilling[J]. Composite Structures, 2020, 248: 112473. [18] 陈海峰, 李海伟, 徐戬, 等. 自动制孔设备在某飞机尾翼装配中的应用研究[J]. 航空制造技术, 2015, 10: 74-78. [19] GUPTA A, ASCROFT H, BARNES S. Effect of chisel edge in ultrasonic assisted drilling of carbon fibre reinforced plastics (CFRP)[J]. Procedia CIRP, 2016, 46: 619-622. [20] XU W, ZHANG L. On the mechanics and material removal mechanisms of vibration-assisted cutting of unidirectional fibre-reinforced polymer composites[J]. International Journal of Machine Tools and Manufacture, 2014, 80-81: 1-10. [21] DONG S, LIAO W, ZHENG K, et al. Hole surface strengthening mechanism and riveting fatigue life of CFRP/aluminum stacks in robotic rotary ultrasonic drilling[J]. Chinese Journal of Aeronautics, 2023, 36(10): 471-484. [22] DONG S, ZHENG K, LIAO W. Stability of lateral vibration in robotic rotary ultrasonic drilling[J]. International Journal of Mechanical Sciences, 2018, 145: 346-352. [23] NEGRI A, SIMONE P, BASILE V, et al. A modular mobile robotic architecture for defects detection and repair in narrow tunnels of CFRP aeronautic components[J]. Robotics and Computer-Integrated Manufacturing, 2019, 55: 109-128. [24] CHEN K, XU P, LI B. Interactive coupling of structural dynamics and milling forces for high-frequency stability prediction in robotic milling[J]. Robotics and Computer-Integrated Manufacturing, 2024, 86: 102676. [25] TIAN W, ZHOU W, ZHOU W, et al. Auto-normalization algorithm for robotic precision drilling system in aircraft component assembly[J]. Chinese Journal of Aeronautics, 2013, 26(2): 495-500. [26] ZHANG B, WU S, WANG D. A review of surface quality control technology for robotic abrasive belt grinding of aero-engine blades[J]. Measurement, 2023, 220: 113381. [27] 许家忠, 郑学海, 周洵. 复合材料打磨机器人的主动柔顺控制[J]. 电机与控制学报, 2019, 23(12): 151-158. [28] 王新涛. 复杂曲面研磨抛光机器人力控制研究[D]. 沈阳: 东北大学, 2015. [29] SIMS N. Vibration absorbers for chatter suppression: A new analytical tuning methodology[J]. Journal of Sound & Vibration, 2007, 301(3-5): 592-607. [30] YANG Y, XU D, LIU Q. Vibration suppression of thin-walled workpiece machining based on electromagnetic induction[J]. Materials and Manufacturing Processes, 2015, 30(7): 829-835. [31] YUAN L, SUN S, PAN Z, et al. Mode coupling chatter suppression for robotic machining using semi-active magnetorheological elastomers absorber[J]. Mechanical Systems and Signal Processing, 2019, 117(15): 221-237. [32] TUNC L, SHAW J. Investigation of the effects of Stewart platform-type industrial robot on stability of robotic milling[J]. International Journal of Advanced Manufacturing Technology, 2016, 87(1): 189-199. [33] CHEN F, ZHAO H. Design of eddy current dampers for vibration suppression in robotic milling[J]. Advances in Mechanical Engineering, 2018, 10(11): 168781. [34] ZAEH M, SCHNOES F, OBST B, et al. Combined offline simulation and online adaptation approach for the accuracy improvement of milling robots[J]. CIRP Annals-Manufacturing Technology, 2020, 69(1): 337-340. [35] WANG W, GUO Q, YANG Z, et al. A state-of-the-art review on robotic milling of complex parts with high efficiency and precision[J]. Robotics and Computer-Integrated Manufacturing, 2023, 79: 102436. [36] BRYG M, BERTRAM T, KIPFMÜLLER M, et al. Modular and reconfigurable simulation environment for evaluating the dynamic behavior of coupled robots performing milling tasks[J]. Procedia CIRP, 2023, 118: 223-228. [37] ZHANG H, LI L, ZHAO J, et al. Theoretical investigation and implementation of nonlinear material removal depth strategy for robot automatic grinding aviation blade[J]. Journal of Manufacturing Processes, 2022, 74: 741-755. [38] ZACHARY A, GRAHAM O, JOHN M, et al. Recent developments in automated fiber placement of thermoplastic composites[J]. SAMPLE Journal, 2014, 50(2): 30-35. [39] 赵志远. 基于机器人的热塑性复合材料铺放装备及工艺仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. [40] 陈吉平, 李岩, 刘卫平, 等. 连续纤维增强热塑性树脂基复合材料自动铺放原位成型急速的航空发展现状[J]. 复合材料学报, 2019, 36(4): 784-785. [41] RAY D, ANTHONY J, LYONS J, et al. Fracture toughness of carbon fiber/polyether ether ketone composites manufactured by autoclave and laser-assisted automated tape placement[J]. Journal of Applied Polymer Science, 2015, 132(11): 41643. [42] STOKES G, COMPSTON P. The effect of processing temperature and placement rate on the short beam strength of carbon fiber-PEEK manufactured using a laser tape placement process[J]. Composites, 2015, 78: 274-283. [43] MATKOVIC, NIKOLAS K, DANIEL S, et al. Novel robot-based process chain for the flexible production of thermoplastic components with CFRP tape reinforcement structures[J]. Procedia CIRP, 2022, 106: 21-26. [44] 王显峰, 严飙, 薛柯, 等. 机器人高效自动铺丝技术研究进展[J]. 航空制造技术, 2019, 62(16): 14-20. [45] 富宏亚, 邵忠喜. 七自由度纤维铺丝样机研制[J]. 航空制造技术, 2010, 17: 46-48. [46] MALHAN R K, SHEMBEKAR A V, KABIR A M, et al. Automated planning for robotic layup of composite prepreg[J]. Robotics and Computer-Integrated Manufacturing, 2021, 67: 102020. [47] WANG G, ZHANG L, YAO X. StrainNet-3D: Real-time and robust 3-dimensional speckle image correlation using deep learning[J]. Optics and Lasers in Engineering, 2022, 158: 107814. [48] AHMED H, MOHSIN A, HONG S-C, et al. Robotic laser sensing and laser mirror excitation for pulse-echo scanning inspection of fixed composite structures with non-planar geometries[J]. Measurement, 2021, 176: 109109. [49] SUN G, ZHOU Z, LI G, et al. Development of an optical fiber-guided robotic laser ultrasonic system for aeronautical composite structure testing[J]. International Journal for Light and Electron Optics, 2016, 127(12): 5135-5140. [50] LU L, HOU J, YUAN S, et al. Deep learning-assisted real-time defect detection and closed-loop adjustment for additive manufacturing of continuous fiber-reinforced polymer composites[J]. Robotics and Computer Integrated Manufacturing, 2023, 79: 102431. [51] OAKI J, SUGIYAMA N, ISHIHARA Y, et al. Micro-defect inspection on curved surface using a 6-DOF robot arm with one-shot BRDF imaging[J]. IFAC-Papers OnLine, 2023, 56(2): 9354-9359. [52] ADRIEN L, KEVIN S, ANTHONY D, et al. Improving accuracy reconstruction of parts through a capability study: A methodology for X-ray computed tomography robotic cell[J]. Robotics and Autonomous Systems, 2024, 171: 104564. [53] CRAMER K. Current and future needs and research for composite materials NDE[C]//SPIE Conference on Behavior and Mechanics of Multifunctional Materials and Composites. 2018. [54] DONG X, PALMER D, AXINTE D, et al. In-situ repair/maintenance with a continuum robotic machine tool in confined space[J]. Journal of Manufacturing Processes, 2019, 38: 313-318. [55] NGUYEN S T, LA H M. A Climbing robot for steel bridge inspection[J]. Journal of Intelligent & Robotic Systems, 2021, 102(4): 75-96. [56] SHI X, XU L, XU H, et al . A 6-DOF humanoid wall-climbing robot with flexible adsorption feet based on negative pressure suction[J]. Mechatronics, 2022, 87: 102889. |