复合材料科学与工程 ›› 2024, Vol. 0 ›› Issue (10): 17-23.DOI: 10.19936/j.cnki.2096-8000.20241028.003

• 基础研究 • 上一篇    下一篇

基于激光诱导石墨烯电学成像的复合材料结构损伤监测

于鑫飞, 严刚*, 周登   

  1. 南京航空航天大学 航空航天结构力学及控制全国重点实验室, 南京 210016
  • 收稿日期:2023-09-06 出版日期:2024-10-28 发布日期:2024-12-10
  • 通讯作者: 严刚(1981—),男,副教授,硕士生导师,主要研究方向为结构健康监测、多功能复合材料结构、复合材料结构强度,yangang@nuaa.edu.cn。
  • 作者简介:于鑫飞(1999—),女,硕士研究生,主要研究方向为多功能复合材料结构。
  • 基金资助:
    国家自然科学基金(11602104);航空航天结构力学及控制国家重点实验室开放课题(MCMS-E-0423G02)

Damage moniotoring for composite structures by using laser-induced graphene and electrical tomography

YU Xinfei, YAN Gang*, ZHOU Deng   

  1. Stata Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics Astronautics, Nanjing 210016, China
  • Received:2023-09-06 Online:2024-10-28 Published:2024-12-10

摘要: 针对军用飞机遭受导弹和炮弹及其碎片高速冲击的情况,提出具有自感知功能的复合材料层板结构,对损伤进行监测。采用激光诱导技术在聚酰亚胺纸表面制备石墨烯感知层,并共固化于复合材料层板中,结合电学成像技术对损伤进行感知与识别。在复合材料层板结构遭受高速冲击前后分别对石墨烯层注入激励电流并测量边界电压数据,通过正则化算法重建损伤引起的电导率变化分布图像,并识别获取损伤信息。实弹射击试验结果表明,聚酰亚胺纸上激光诱导的石墨烯层具有良好的感知功能,结合电学成像重建的损伤图像可以较准确反映出损伤位置,并提供损伤近似尺寸等信息,验证了所提出的自感知复合材料层板对高速冲击损伤监测的有效性。

关键词: 激光诱导石墨烯, 自感知复合材料结构, 高速冲击损伤监测, 电学成像

Abstract: Targeting the high velocity impact of missiles, shells and their fragments on military aircrafts, composite laminate with self-sensing capability for monitoring ballistic damage is proposed. Graphene sensing layer on the surface of polyimide paper is fabricated by laser-induced technology and co-cured in composite laminate to sense and identify damage with electrical tomography. Before and after the composite laminate is subjected to high velocity impact, excitation current is injected into the graphene sensing layer and the corresponding boundary voltage is measured. The distribution image of the conductivity change of the sensing layer caused by the damage is reconstructed by regularization-based algorithm, and information about the damage is identified. Experimental studies by ballistic impacts have shown that laser-induced graphene layer on polyimide paper has good sensing capability, and the tomography image reconstructed by electrical tomography can accurately reflect the location of damage and provide information about the approximate size of the damage, verifying the effectiveness of the proposed self-sensing composite laminate for monitoring of high velocity impact damage.

Key words: laser-induced graphene, self-sensing composite structure, high velocity impact damage monitoring, electrical tomography

中图分类号: