[1] LI V, STANG H. Elevating FRC material ductility to infrastructure durability[C]//DI PRISCO M, FELICETTI R, PLIZZARI G A. 6th RILEM Symposium on Fiber-Reinforced Concretes. Varenna: 2004: 171-186. [2] 徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008(6): 45-60. [3] 李庆华, 徐世烺. 超高韧性水泥基复合材料基本性能和结构应用研究进展[J]. 工程力学, 2009, 26(S2): 23-67. [4] SAHMARAN M, OZBAY E, YIICEL H E. Frost resistance and microstructure of engineered cementitious composites: Influence of fly ash and micro poly-vinyl-alcohol fiber[J]. Cement & Concrete Composites, 2012, 34(2): 156-165. [5] 邓宗才, 薛会青, 徐海宾. ECC材料的抗冻融性能试验研究[J]. 华北水利水电学院学报, 2013, 34(1): 16-19. [6] JANG S J, ROKUGO K, PARK W S, et al. Influence of rapid freeze-thaw cycling on the mechanical properties of sustainable strain-hardening cement composite (2SHCC)[J]. Materials, 2014, 7(2): 1422-1440. [7] 靳贺松, 李福海, 何肖云峰, 等. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076, 8082. [8] 刘佳鑫, 尹立强, 刘曙光, 等. 冻结状态聚乙烯醇纤维/水泥基复合材料抗压本构模型[J]. 复合材料学报, 2022, 39(5): 2356-2368. [9] 赵军, 蒋祖发, 温金鑫, 等. SHCC冻融后单轴压缩力学性能及损伤机理研究[J]. 混凝土, 2022(3): 1-5. [10] 王振波, 孙鹏, 刘伟康, 等. 硫酸盐侵蚀下ECC轴拉力学性能与微观结构[J]. 华中科技大学学报(自然科学版), 2021, 49(7): 31-36. [11] 郭丽萍, 张健, 曹园章, 等. 超高性能水泥基材料复合盐侵蚀研究: 合成Friedel盐和钙矾石在硫酸盐和氯盐溶液中的稳定性[J]. 材料导报, 2017, 31(23): 132-137. [12] LIU H, ZHANG Q, LI V, et al. Durability study on engineered cementitious composites (ECC) under sulfate and chloride environment[J]. Construction & Building Materials, 2017, 133: 171-181. [13] 张菊, 刘曙光, 闫长旺, 等. 氯盐环境对PVA纤维增强水泥基复合材料抗冻性的影响[J]. 硅酸盐学报, 2013, 41(6): 766-771. [14] ZHAO N, WANG S, WANG C, et al. Study on the durability of engineered cementitious composites (ECCs) containing high-volume fly ash and bentonite against the combined attack of sulfate and freezing-thawing (F-T)[J]. Construction and Building Materials, 2020, 233: 117313. [15] ZHAO N, WANG S, QAUN X, et al. Behavior of polyvinyl alcohol fiber reinforced geopolymer composites under the coupled attack of sulfate and freeze-thaw in a marine environment[J]. Ocean Engineering, 2021, 238(2): 109734. [16] CHE J, GONG M, AN X, et al. Compressive properties and microscopic analysis of engineered cementitious composites after salt freezing[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2022,128: 103253. [17] OEZBAY E, KARAHAN O, LACHEMI M, et al. Dual effectiveness of freezing-thawing and sulfate attack on high-volume slag-incorporated ECC[J]. Composites Part B: Engineering, 2013, 45(1): 1384-1390. [18] 曹园章, 郭丽萍, 臧文洁, 等. 氯盐和硫酸盐交互作用下水泥基材料的破坏机理综述[J]. 材料导报, 2018, 32(23): 4142-4149. [19] 张磊, 杨莉, 迟守慧. 混凝土盐冻过程中的氯离子结合研究[J]. 混凝土, 2014(4): 17-19. [20] 李强. 矿物掺合料对混凝土抗盐冻性的影响[J]. 硅酸盐通报, 2015, 34(3): 882-887. [21] 王晨霞, 郭磊, 曹芙波. 盐碱与冻融耦合作用下再生混凝土耐久性试验研究[J]. 硅酸盐通报, 2018, 37(1): 10-16. [22] 朱红兵, 李咏灿, 姚晨, 等. 复合盐溶液侵蚀与环境因素影响下混凝土耐久性研究进展[J]. 科学技术与工程, 2021, 21(14): 5641-5649. [23] 王义超, 侯梦君, 余江滔, 等. 聚乙烯纤维制备超高延性水泥基复合材料的试验研究[J]. 材料导报, 2018, 32(20): 3535-3540. [24] WANG J, NIU D. Influence of freeze-thaw cycles and sulfate corrosion resistance on shotcrete with and without steel fiber[J]. Construction and Building Materials, 2016, 122(30): 628-636. [25] 卢喆, 王社良, 王善伟, 等. 氯盐侵蚀-冻融循环耦合作用下改性糯米灰浆耐久性能增强方法[J]. 材料导报, 2021, 35(3): 3033-3040. [26] 耿欧, 孙倩, 李大贺. 氯盐对再生混凝土硫酸盐侵蚀的抑制作用研究[J]. 建筑科学与工程学报, 2020, 37(6): 108-116. [27] 曹芙波, 张秀芳, 杨晓刚, 等. 复合盐冻后再生混凝土应力-应变全曲线试验研究[J]. 建筑结构学报, 2022, 43(S1): 362-372. |