复合材料科学与工程 ›› 2024, Vol. 0 ›› Issue (10): 72-78.DOI: 10.19936/j.cnki.2096-8000.20241028.010

• 应用研究 • 上一篇    下一篇

玻璃纤维增强聚合物筋增强混凝土柱的轴压承载力评估

冉黎1, 吴文2, 周磊3   

  1. 1.重庆工贸职业技术学院, 重庆 408000;
    2.重庆大学 土木工程学院, 重庆 400045;
    3.中国三峡建工(集团)有限公司, 成都 610041
  • 收稿日期:2023-07-10 出版日期:2024-10-28 发布日期:2024-12-10
  • 作者简介:冉黎(1986—),男,讲师,主要从事建筑工程施工技术、复合材料工程应用方面的研究,lran19@126.com。
  • 基金资助:
    国家自然科学基金(52027812);重庆市教育委员会(Z213135)

Axial compression capacity evaluation of concrete columns reinforced with glass fiber reinforced polymer bars

RAN Li1, WU Wen2, ZHOU Lei3   

  1. 1. Chongqing Industry & Trade Polytechnic, Chongqing 408000, China;
    2. School of Civil Engineering, Chongqing University, Chongqing 400045, China;
    3. China Three Gorges Construction Engineering Corporation, Chengdu 610041, China
  • Received:2023-07-10 Online:2024-10-28 Published:2024-12-10

摘要: 玻璃纤维增强聚合物(GFRP)筋对混凝土柱承载力的影响十分关键,为深入评估GFRP筋设计应用于增强混凝土柱的承载力性能,利用随机森林(RF)、人工神经网络(ANN)、AdaBoost和XGBoost算法,分别建立了各自的GFRP筋增强混凝土柱承载力模型。建立了GFRP筋增强混凝土柱的试验数据库,对已有的GFRP筋增强混凝土柱承载力理论公式进行了初步评估,并进一步对比分析GFRP筋增强混凝土柱承载力的RF模型、ANN模型、AdaBoost模型和XGBoost模型的预测精度。结果表明:已有的GFRP筋增强混凝土柱承载力理论公式的判定系数(0.70左右)均小于RF模型(0.82)、AdaBoost模型(0.80)和XGBoost模型(0.80)的制定系数,且平均绝对误差和均方根误差基本都大于RF模型、ANN模型、AdaBoost模型和XGBoost模型的相应值,表明现有理论公式的准确性低于RF模型、ANN模型、AdaBoost模型和XGBoost模型准确性。与ANN模型相比,RF模型、AdaBoost模型和XGBoost模型均可较为准确地评估GFRP筋增强混凝土柱的实际承载力性能(尤其是RF模型)。研究可为GFRP筋设计应用于增强混凝土结构时的承载力设计和分析提供参考。

关键词: 玻璃纤维增强聚合物筋, 混凝土柱, 轴压承载力, 复合材料, 随机森林

Abstract: The influence of glass fiber reinforced polymer (GFRP) bars on the axial compression capacity of concrete columns is crucial. To thoroughly evaluate the performance of GFRP bars in strengthening concrete columns, prediction models for the load-bearing capacity were established using the Random Forest (RF), Artificial Neural Network (ANN), AdaBoost, and XGBoost algorithms. A database containing experimental data from 256 GFRP-reinforced concrete columns was created. The existing theoretical formulas for the axial compression capacity of GFRP-reinforced concrete columns were preliminarily evaluated, and the predictive accuracy of the RF, ANN, AdaBoost, and XGBoost models for the axial compression capacity of GFRP-reinforced concrete columns was further analyzed. The results showed that the determination coefficient of the existing theoretical formulas for the axial compression capacity of GFRP-reinforced concrete columns (around 0.70) was lower than that of the RF model (0.82), AdaBoost model (0.80), and XGBoost model (0.80). Moreover, the average absolute error and root mean square error were generally higher for the existing theoretical formulas compared to the RF, ANN, AdaBoost, and XGBoost models, indicating that the accuracy of the existing theoretical formulas was inferior to that of the RF, ANN, AdaBoost, and XGBoost models. In comparison to the ANN model, the RF, AdaBoost, and XGBoost models could accurately evaluate the actual axial compression capacity performance of GFRP-reinforced concrete columns, especially the RF model. This research provides a reference for the axial compression capacity design and analysis when designing GFRP bars for strengthening concrete structures.

Key words: glass fiber reinforced polymer bar, concrete column, axial compression capacity, composites, random forest

中图分类号: