[1] 刘海双. 玻璃纤维增强聚合物筋力学性能及耐久性能研究[D]. 郑州: 郑州大学, 2015. [2] 王振华, 杨正, 鲁世科, 等. 玻璃纤维增强聚合物基复合材料阻燃改性研究进展[J]. 塑料工业, 2022, 50(12): 8-15. [3] 高永红, 彭梦蜜, 金清平. 温度对玻璃纤维增强聚合物筋与混凝土黏结性能影响试验研究[J]. 中国塑料, 2022, 36(9): 16-23. [4] 程杰, 齐玉军, 谢志锦. 玻璃纤维增强聚合物复合材料约束壁式钢管混凝土短柱轴压性能试验[J]. 复合材料学报, 2021, 38(6): 1825-1837. [5] 闫邦平, 连春明. 混凝土碱性环境下玻璃纤维增强聚合物筋力学性能研究[J]. 工业建筑, 2016, 46(12): 152-156. [6] 高丹盈, 李士会, 朱海堂, 等. 玻璃纤维增强聚合物筋压缩和剪切性能试验研究[J]. 玻璃钢/复合材料, 2009(3): 28-32. [7] JAFARI A, BAZLI M, ASHRAFI H, et al. Effect of fibers configuration and thickness on tensile behavior of GFRP laminates subjected to elevated temperatures[J]. Construction and Building Materials, 2019, 202: 189-207. [8] Design and construction of building structures with fiber-reinforced polymer: CAN/CSA S806-12[S]. Canada: 2012. [9] HADI M N S, YOUSSEF J. Experimental investigation of GFRP-reinforced and GFRP-encased square concrete specimens under axial and eccentric load, and four-point bending test[J]. Journal of Composites for Construction, 2016, 20(5): 04016020. [10] ELCHALAKANI M, MA G, ASLANI F, et al. Design of GFRP-reinforced rectangular concrete columns under eccentric axial loading[J]. Magazine of Concrete Research, 2017, 69(17): 865-877. [11] AFIFI M Z, MOHAMED H M, BENMOKRANE B. Axial capacity of circular concrete columns reinforced with GFRP bars and spirals[J]. Journal of Composites for Construction, 2014, 18(1): 04013017. [12] KARIM H, SHEIKH M N, HADI M N S. Axial load-axial deformation behaviour of circular concrete columns reinforced with GFRP bars and helices[J]. Construction and Building Materials, 2016, 112: 1147-1157. [13] ALAJARMEH O S, MANALO A C, BENMOKRANE B, et al. Compressive behavior of axially loaded circular hollow concrete columns reinforced with GFRP bars and spirals[J]. Construction and Building Materials, 2019, 194: 12-23. [14] KHORRAMIAN K, SADEGHIAN P. Experimental investigation of short and slender rectangular concrete columns reinforced with GFRP bars under eccentric axial loads[J]. Journal of Composites for Construction, 2020, 24(6): 04020072. [15] XUE W, HU X, FANG Z. Experimental studies of GFRP reinforced concrete columns under static eccentric loading[C]//7th International Conference on Fiber Reinforced Polymer (FRP) Composites in Civil Engineering (CICE 2014). Canada: International institute for FRP in Construction (IIFC), 2014: 236-242. [16] RAZA A, El OUNI M H, BERRADIA M. Structural assessment of eccentrically loaded GFRP reinforced circular concrete columns: Experiments and finite element analysis[J]. Composite Structures, 2021, 275: 114528. [17] LO S H, KWAN A K H, OUYANG Y, et al. Finite element analysis of axially loaded FRP-confined rectangular concrete columns[J]. Engineering Structures, 2015, 100: 253-263. [18] MAMARI A H S A, GHAFRI R S H H A, ARAVIND N, et al. Experimental study and development of machine learning model using random forest classifier on shear strength prediction of RC beam with externally bonded GFRP composites[J]. Asian Journal of Civil Engineering, 2023, 24(1): 267-286. [19] GO C, KWAK Y J, KWAG S, et al. On developing accurate prediction models for residual tensile strength of GFRP bars under alkaline-concrete environment using a combined ensemble machine learning methods[J]. Case Studies in Construction Materials, 2023, 18: e02157. [20] LI H, YANG D, HU T. Data-driven model for predicting the compressive strengths of GFRP-confined reinforced concrete columns[J]. Buildings, 2023(5): 1309. [21] RAZA A, El OUNI M H, BAILI J. Data-driven analysis on axial strength of GFRP-NSC columns based on practical artificial neural network tool[J]. Composite Structures, 2022, 291: 115598. [22] Concrete structures standards: AS 3600—2018[S]. Australia: 2018. [23] MOHAMED H M, AFIFI M Z, BENMOKRANE B. Performance evaluation of concrete columns reinforced longitudinally with FRP bars and confined with FRP hoops and spirals under axial load[J]. Journal of Bridge Engineering, 2014, 19(7): 04014020. [24] HADHOOD A, MOHAMED H M, BENMOKRANE B. Axial load-moment interaction diagram of circular concrete columns reinforced with CFRP bars and spirals: Experimental and theoretical investigations[J]. Journal of Composites for Construction, 2017, 21(2):04016092. [25] RODRIGUEZ G V, SANCHEZ C M, CHICA O M, et al. Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines[J]. Ore Geology Reviews, 2015, 71: 804-818. [26] YILMAZ I, KAYNAR O. Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils[J]. Expert Systems with Applications, 2011, 38(5): 5958-5966. [27] SHANMUGASUNDAR G, VANITHA M, CˇEP R, et al. A comparative study of linear, random forest and ada boost regressions for modeling non-traditional machining[J]. Processes, 2021, 9(11): 2015. [28] SHEHADEH A, ALSHBOUL O, Al MAMLOOK R E, et al. Machine learning models for predicting the residual value of heavy construction equipment: An evaluation of modified decision tree, Light GBM, and XGBoost regression[J]. Automation in construction, 2021, 129: 103827. |