[1] ANSARI M M, CHAKRABARTI A. Ballistic performance of unidirectional glass fiber laminated composite plate under normal and oblique impact[J]. Procedia Engineering, 2017, 173: 161-168. [2] XIN S H, WEN H M. A progressive damage model for fiber reinforced plastic composites subjected to impact loading[J]. International Journal of Impact Engineering, 2015, 75: 40-52. [3] PAZ J, DIAZ J, ROMERA L, et al. Size and shape optimization of aluminum tubes with GFRP honeycomb reinforcements for crashworthy aircraft structures[J]. Composite Structures, 2015, 133: 499-507. [4] LURIE S, VOLKOV-BOGORODSKIY D, SOLYAEV Y, et al.Impact behavior of a stiffened shell structure with optimized GFRP corrugated sandwich panel skins[J]. Composite Structures, 2020, 248: 112479. [5] YANG X, SUN Y, YANG J, et al. Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure[J]. Thin-Walled Structures, 2018, 125: 1-11. [6] LIU S, ZHANG Y, LIU P. New analytical model for heat transfer efficiency of metallic honeycomb structures[J]. International Journal of Heat and Mass Transfer, 2008, 51(25-26): 6254-6258. [7] HONG S T, PAN J, TYAN T, et al. Quasi-static crush behavior of aluminum honeycomb specimens under non-proportional compression-dominant combined loads[J]. International Journal of Plasticity, 2006, 22(6): 1062-1088. [8] QUEHEILLALT D T, WADLEY H. Titanium alloy lattice truss structures[J]. Materials & Design, 2009, 30(6): 1966-1975. [9] KIM G, STERKENBURG R, TSUTSUI W. Investigating the effects of fluid intrusion on Nomex® honeycomb sandwich structures with carbon fiber facesheets[J]. Composite Structures, 2018, 206: 535-549. [10] 李宗权, 张胜兰, 杨稳. 蜂窝夹层结构冲击试验与仿真研究综述[J]. 复合材料科学与工程, 2022(3): 121-128. [11] 肖锋, 谌勇, 章振华, 等. 夹层结构冲击动力学研究综述[J]. 振动与冲击, 2013(18): 6-12. [12] ZHU F, ZHAO L, LU G, et al. Deformation and failure of blast-loaded metallic sandwich panels-Experimental investigations[J]. International Journal of Impact Engineering, 2008, 35(8): 937-951. [13] DHARMASENA K P, WADLEY H N G, XUE Z, et al. Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading[J]. International Journal of Impact Engineering, 2008, 35(9): 1063-1074. [14] 张旭红, 王志华, 赵隆茂. 爆炸载荷作用下铝蜂窝夹芯板的动力响应[J]. 爆炸与冲击, 2009, 29(4): 356-360. [15] 李世强, 李鑫, 吴桂英, 等. 梯度蜂窝夹芯板在爆炸荷载作用下的动力响应[J]. 爆炸与冲击, 2016, 36(3): 333-339. [16] PERRY T F N N J. Experimental investigation into the response of chopped-strand mat glassfibre laminates to blast loading[J]. International Journal of Impact Engineering, 2002, 27(6): 639-667. [17] ARORA H, HOOPER P A, DEAR J P. Dynamic response of full-scale sandwich composite structures subject to air-blast loading[J]. Composites Part A:Applied Science and Manufacturing, 2011, 42(11): 1651-1662. [18] KLAUS M, REIMERDES H G, GUPTA N K. Experimental and numerical investigations of residual strength after impact of sandwich panels[J]. International Journal of Impact Engineering, 2012, 44: 50-58. [19] COMTOIS J L R, EDWARDS M R, OAKES M C. The effect of explosives on polymer matrix composite laminates[J]. Composites Part A: Applied Science & Manufacturing, 1999, 30(3): 181-190. [20] DESHPANDE V, HEAVER A, FLECK N, et al. An underwater shock simulator[J]. Proceedings of the Royal Society A: Mathematical Physical & Engineering Sciences, 2006, 462: 1021-1041. [21] FLECK N A, DESHPANDE V S. The resistance of clamped sandwich beams to shock loading[J]. Journal of Applied Mechanics, 2004, 71(3): 386-401. [22] MORI L, LEE S, et al. Deformation and fracture modes of sandwich structures subjected to underwater impulsive loads[J]. Journal of Mechanics of Materials & Structures, 2007, 2(10): 1981-2006. [23] AVACHAT S, ZHOU M. Effect of facesheet thickness on dynamic response of composite sandwich plates to underwater impulsive loading[J]. Experimental Mechanics, 2011, 52(1): 83-93. [24] 任鹏. 非药式水下冲击波加载技术及铝合金结构抗冲击特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. [25] 项大林, 谢志丰, 郭振, 等. 玻璃纤维增强复合板在水中冲击载荷下的响应与破坏研究[J]. 兵器装备工程学报, 2019, 40(6): 177-180. [26] ARSLAN K, GUNES R. Experimental damage evaluation of honeycomb sandwich structures with Al/B4C FGM face plates under highvelocity impact loads[J]. Composite Structures, 2018, 202: 304-312. [27] YAHAYA M A, RUAN D, LU G, et al. Response of aluminium honeycomb sandwich panels subjected to foam projectile impact-An experimental study[J]. International Journal of Impact Engineering, 2015, 75: 100-109. [28] HOU W, FENG Z, LU G, et al. Ballistic impact experiments of metallic sandwich panels with aluminium foam core[J]. International Journal of Impact Engineering, 2010, 37(10): 1045-1055. [29] REN P, TAO Q, YIN L, et al. High-velocity impact response of metallic sandwich structures with PVC foam core[J]. International Journal of Impact Engineering, 2020, 144: 103657. [30] VILLANUEVA G R, CANTWELL W J. The high velocity impact response of composite and FML-reinforced sandwich structures[J]. Composites Science & Technology, 2004, 64(1): 35-54. [31] TAYLOR G I. Aerodynamics and the mechanics of projectiles and explosions[M]. Cambridge University Press: G. K. Batchelor, 1963. [32] KAMBOUCHEV N, NOELS L, RADOVITZKY R. Nonlinear compressibility effects in fluid-structure interaction and their implications on the air-blast loading of structures[J]. Journal of Applied Physics, 2006, 100(6): 287-303. [33] VAZIRI A, HUTCHINSON J W. Metal sandwich plates subject to intense air shocks[J]. International Journal of Solids and Structures, 2007, 44(6): 2021-2035. [34] DHARMASENA K P, WADLEY H, WILLIAMS K, et al. Response of metallic pyramidal lattice core sandwich panels to high intensity impulsive loading in air[J]. International Journal of Impact Engineering, 2011, 38(5): 275-289. [35] 龚李施. 爆炸环境下车内乘员约束系统分析与优化设计[D]. 南京: 南京理工大学, 2017. [36] FENG Z, WANG Z, LU G, et al. Analytical investigation and optimal design of sandwich panels subjected to shock loading[J]. Materials & Design, 2009, 30(1): 91-100. [37] 荣吉利, 刘东兵, 赵自通, 等. 铝蜂窝夹芯结构抗爆性能仿真分析与优化[J]. 北京理工大学学报, 2023, 43(1): 18-26. [38] 魏子涵, 赵振宇, 叶帆, 等. 金属蜂窝夹层结构抗水下爆炸特性[J]. 爆炸与冲击, 2021, 41(8): 61-77. [39] LEBLANC J, SHUKLA A. Dynamic response and damage evolution in composite materials subjected to underwater explosive loading: An experimental and computational study[J]. Composite Structures, 2010, 92(10): 2421-2430. [40] LANGDON G S, KLEMPERER C, ROWLAND B K, et al. The response of sandwich structures with composite face sheets and polymer foam cores to air-blast loading: Preliminary experiments[J]. Engineering Structures, 2012, 36: 104-112. [41] WEI X, TRAN P, VAUCORBEIL A D, et al. Three-dimensional numerical modeling of composite panels subjected to underwater blast[J]. Journal of the Mechanics & Physics of Solids, 2013, 61(6): 1319-1336. [42] 周昊, 郭锐, 刘荣忠, 等. 碳纤维增强聚合物复合材料方形蜂窝夹层结构水下爆炸动态响应数值模拟[J]. 复合材料学报, 2019, 36(5): 1226-1234. [43] XUE Z, HUTCHINSON J W. A comparative study of impulse-resistant metal sandwich plates[J]. International Journal of Impact Engineering, 2004, 30(10): 1283-1305. [44] 王自力, 张延昌, 顾金兰. 基于夹层板抗水下爆炸舰船底部结构设计[J]. 舰船科学技术, 2010, 31(1): 22-27. [45] LAN X, FENG S, HUANG Q, et al. A comparative study of blast resistance of cylindrical sandwich panels with aluminum foam and auxetic honeycomb cores[J]. Aerospace Science and Technology, 2019, 87: 37-47. [46] 宫晓博, 刘宇鸿, 于昌利. 不同泊松比蜂窝夹芯结构的抗爆性能对比分析[J]. 哈尔滨工程大学学报, 2022, 43(10): 1399-1405. [47] 陶晓晓, 孙晓旺, 石文, 等. 设计参数对负泊松比结构抗爆性能的影响研究[J]. 兵器装备工程学报, 2021, 42(4): 74-79. [48] 赵相江. 爆炸载荷下双层蜂窝夹芯板的抗爆性能[D]. 太原: 太原理工大学, 2021. [49] 王显会, 师晨光, 周云波, 等. 车辆底部防护蜂窝夹层结构抗冲击性能分析[J]. 北京理工大学学报, 2016, 36(11): 1122-1126. [50] 罗小丽, 王洪亮, 周云波, 等. 蜂窝夹层结构对车辆抗爆炸冲击性能的影响[J]. 兵器装备工程学报, 2020, 41(4): 215-219. [51] 朱易. 橡胶填充蜂窝夹层复合结构抗爆性能研究[D]. 南京: 南京理工大学, 2014. [52] CHATURVEDI R, TRIKHA M, SIMHA K R Y. Impact penetration through spacecraft honeycomb panels analytical[J]. Materials Today: Proceedings, 2020, 21(2): 1050-1058. [53] MINDÁK M, PELAGIĆ Z, PASTOREK P, et al. Finite element modelling of high velocity impacton plate structures[J]. Procedia Engineering, 2016, 136: 162-168. [54] KOLOPP A, ALVARADO R A, RIVALLANT S, et al. Modeling impact on aluminium sandwich including velocity effects in honeycomb core[J]. Journal of Sandwich Structures & Materials, 2013, 15(6): 733-757. [55] DAR U A, ZHANG W, XU Y. Modeling the perforation failure of honeycomb sandwich structures through numerical homogenization[C] //Proceedings of 2013 10th International Bhurban Conference on Applied Sciences & Technology (IBCAST). IEEE, 2013. [56] BUITRAGO B L, SANTIUSTE C, SANCHEZ-SAEZ S, et al. Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact[J]. Composite Structures, 2010, 92(9): 2090-2096. [57] FELI S, POUR M. An analytical model for composite sandwich panels with honeycomb core subjected to high-velocity impact[J]. Composites Part B: Engineering, 2012, 43(5): 2439-2447. [58] TANG E, YIN H, CHEN C, at el. Simulation of CFRP/aluminum foam sandwich structure under high velocity impact[J]. Journal of Materials Research and Technology, 2020, 9(4): 7273-7287. [59] CORBETT G G, REID S R, JOHNSON W. Impact loading of plates and shells by free-flying projectiles:A review[J]. International Journal of Impact Engineering, 1996, 18(2): 141-230. [60] SUN G, CHEN D, WANG H, et al. High-velocity impact behaviour of aluminium honeycomb sandwich panels with different structural configurations[J]. International Journal of Impact Engineering, 2018, 122: 119-136. |