[1] 刘丽滨, 李海涛, 刁爱民, 等. 水下爆炸船体梁总体响应特性数值模拟[J]. 高压物理学报, 2021, 35(6): 178-185. [2] 徐景林, 顾文彬, 刘建青, 等. 圆柱形爆炸容器内爆炸载荷的分布规律[J]. 振动与冲击, 2020, 39(18): 276-282. [3] 周朗, 徐春光. 一种冲击波作用下结构毁伤算法研究[J]. 爆炸与冲击, 2022, 42(10): 99-110. [4] 姜颖资, 宋海博. 爆炸冲击波对“低慢小”无人机毁伤效应研究[J]. 弹箭与制导学报, 2022, 42(2): 117-121. [5] 张舵, 姚术健, 黄河, 等. 箱型结构内部爆炸破坏研究进展[J]. 爆炸与冲击, 2021, 41(7): 18-32. [6] 王礼立. 爆炸与冲击载荷下结构和材料动态响应研究的新进展[J]. 爆炸与冲击, 2001(2): 81-88. [7] 杨科之, 刘盛. 空气冲击波传播和衰减研究进展[J]. 防护工程, 2020, 42(3): 1-10. [8] FLECK N A, LIEM F, WOODS G D, et al. Structural analysis methods for lightweight metallic corrugated core sandwich panels subjected to blast loads[J]. Naval Engineers Journal, 1991, 103(4): 134-136. [9] QIU X, DESHPANDE V S, FLECK N A. Finite element analysis of the dynamic response of clamped sandwich beams subject to shock loading[J]. European Journal of Mechanics/A Solids, 2003, 22(6): 801-814. [10] XUE Z, HUTCHINSON J W. Preliminary assessment of sandwich plates subject to blast loads[J]. International Journal of Mechanical Sciences, 2003, 45(4): 687-705. [11] VAZIRI A, HUTCHINSON J W. Metal sandwich plates subject to intense air shocks[J]. International Journal of Solids and Structures, 2007, 44(6): 2021-2035. [12] 曹凤霞. 爆炸综合毁伤效应研究[D]. 南京: 南京理工大学, 2008. [13] 李翼祺,马素贞. 爆炸力学[M]. 科学出版社, 1992. [14] HENRYCH J, MAJOR R. The dynamics of explosion and its use[M]. Amsterdam: Elsevier, 1979. [15] 周听清. 爆炸动力学及其应用[M]. 合肥: 中国科学技术大学出版社, 2001. [16] 夏冰寒. 夹芯复合材料结构在破片-冲击波联合作用下的防护性能研究[D]. 南京: 南京理工大学, 2020. [17] 刘水江. 复合防护破片板防护性能分析及数值模拟[D]. 武汉: 武汉理工大学, 2007. [18] 夏晓旭, 宁建国, 李健. 高压气体载荷下预制破片与空气冲击波的运动关系[J]. 高压物理学报, 2021, 35(5): 31-41. [19] 汪维, 刘光昆, 赵强, 等. 近爆作用下方形板表面爆炸载荷分布函数研究[J]. 中国科学: 物理学力学天文学, 2020, 50(2): 144-152. [20] 李茂, 侯海量, 朱锡, 等. 模拟破片杀伤战斗部空爆冲击波与高速破片群联合作用的等效试验方法[J]. 振动与冲击, 2020, 39(1): 184-190. [21] 王永刚, 胡时胜, 王礼立. 爆炸荷载下泡沫铝材料中冲击波衰减特性的实验和数值模拟研究[J]. 爆炸与冲击, 2003, 23(6): 516-522. [22] 韩守红, 吕振华. 铝泡沫夹层结构抗爆炸性能仿真分析及优化[J]. 兵工学报, 2010, 31(11): 1468-1474. [23] 敬霖, 赵隆茂, 王志华. 轻质泡沫金属夹芯壳结构的抗爆炸冲击性能研究[J]. 固体力学学报, 2015, 36(S1): 138-144. [24] CUI L, KIERNAN S, GILCHRIST M D. Designing the energy absorption capacity of functionally graded foam materials[J]. Materials Science & Engineering A, 2009, 507(1-2): 215-225. [25] WANG E, GARDNER N, SHUKLA A. The blast resistance of sandwich composites with stepwise graded cores-Science Direct[J]. International Journal of Solids and Structures, 2009, 46(18-19): 3492-3502. [26] 李春鹏, 张攀, 刘均, 等. 空爆载荷下功能梯度泡沫铝夹层板动响应数值仿真[J]. 中国舰船研究, 2018, 13(3): 77-84. [27] 贺涵. 高分子材料在家居设计领域的应用[J]. 当代化工研究, 2018(8): 139-140. [28] 宋延泽, 王志华, 赵隆茂, 等. 泡沫金属子弹冲击下多孔金属夹芯板动力响应研究[J]. 兵工学报, 2011, 32(1): 1-7. [29] 张佐光, 宋焕成, 梁志勇, 等. 复合材料弹道性能的实验与估算[J]. 材料工程, 1994(6): 28-31. [30] 谢恒, 吕振华. 破片侵彻纤维复合材料板的有限元数值模拟[J]. 清华大学学报: 自然科学版, 2012(1): 96-101. [31] 杨小兵, 程晓农, 杨娟, 等. 装甲钢/芳纶复合材料抗爆震性能研究[J]. 化工新型材料, 2007, 35(8): 36-37. [32] 徐豫新, 王树山, 严文康, 等. 纤维增强复合材料三明治板的破片穿甲实验[J]. 复合材料学报, 2012, 29(3): 72-78. [33] 徐豫新, 戴文喜, 王树山, 等. 纤维增强复合材料三明治板破片穿甲数值仿真[J]. 振动与冲击, 2014, 33(2): 134-140. [34] NGUYEN L H, LÄSSIG T R, RYAN S, et al. Numerical modelling of ultra-high molecular weight polyethylene composite under impact loading[J]. Procedia Engineering, 2015, 103: 436-443. [35] DEL ROSSO S, IANNUCCI L, CURTIS P T. On the ballistic impact response of microbraid reinforced polymer composites[J]. Composite Structures, 2016, 137: 70-84. [36] 李典, 朱锡, 侯海量, 等. 近距爆炸破片作用下芳纶纤维夹芯复合舱壁结构毁伤特性实验研究[J]. 兵工学报, 2016, 37(8): 1436-1442. [37] 李琦, 龚烈航, 张庚申, 等. 芳纶与高强聚乙烯纤维叠层组合对弹片的防护性能[J]. 纤维复合材料, 2004(3): 3-5. [38] 孙颖, 史宝会, 李涛涛, 等. 芳纶/高强聚乙烯纤维混杂复合材料低速冲击实验研究[J]. 固体火箭技术, 2016, 39(5): 709-714. [39] 武岳, 王旭东, 刘迪, 等. 直升机陶瓷复合装甲发展现状及新型材料应用前景[J]. 航空材料学报, 2019, 39(5): 34-44. [40] 邵清清, 顾辉. 基于SEM表征平台对碳化硅陶瓷微结构-相变关系的研究[C]//第十一届无机材料结构、性能及测试表征技术研讨会程序册与摘要集. 2020: 33. [41] TAYLOR L M, CHEN E P, KUSZMAUL J S. Microcrack-induced damage accumulation in brittle rock under dynamic loading[J]. Computer Methods in Applied Mechanics & Engineering, 1986, 55(3): 301-320. [42] RAJENDRAN A M, KROUPA J L. Impact damage model for ceramic materials[J]. Journal of Applied Physics, 1989, 66(8): 3560-3565. [43] JOHNSON H G R. A computational constitutive model for glass subjected to large strains, high strain rates and high pressures[J]. Journal of Applied Mechanics, 2011, 78(5): 051003. [44] JOHNSON G R, HOLMQUIST T J. Response of boron carbide subjected to large strains, high strain rates, and high pressures[J]. Journal of Applied Physics, 1999, 85(12): 8060-8073. [45] BRAGA F D O, LUZ F S D, MONTEIRO S N, et al. Effect of the impact geometry in the ballistic trauma absorption of a ceramic multilayered armor system[J]. Journal of Materials Research and Technology, 2018, 7(4): 554-560. [46] BOLDIN M S, BERENDEEV N N, MELEKHIN N V, et al. Review of ballistic performance of alumina: Comparison of alumina with silicon carbide and boron carbide[J]. Ceramics International, 2021, 47(18): 25201-25213. [47] GRUJICIC M, RAMASWAMI S, SNIPES J. Nacre-like ceramic/polymer laminated composite for use in body-armor applications[J]. AIMS Materials Science, 2016, 3(1): 83-113. [48] 李茂, 高圣智, 侯海量, 等. 空爆冲击波与破片群联合作用下聚脲涂覆陶瓷复合装甲结构毁伤特性[J]. 爆炸与冲击, 2020, 40(11): 51-63. [49] HOLMQUIST T J, JOHNSON G R. Characterization and evaluation of silicon carbide for high-velocity impact[J]. Journal of Applied Physics, 2005, 97(9): 5858-753. [50] SHEN Z, HU D, YANG G, et al. Ballistic reliability study on SiC/UHMWPE composite armor against armor-piercing bullet[J]. Composite Structures, 2019, 213: 209-219. [51] COOL P. 水下爆炸[M]. 北京: 国防工业出版社, 1960. [52] HOPKINS H G, PRAGER W. On the dynamics of plastic circular plates[J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 1954, 5(4): 317-330. [53] COX A D, MORLAND L W. Dynamic plastic deformations of simply-supportedsquare plates[J]. Journal of the Mechanics & Physics of Solids, 1959, 7(4): 229-241. [54] TAYLOR G I. Aerodynamics and the mechanics of projectiles and explosions[M]. Cambridge University Press, 1963. [55] QI G, GHEN Y L, BRCHERT P, et al. A hybrid joining insert for sandwich panels with pyramidal lattice truss cores[J]. Composite Structures, 2020, 241: 112123. [56] MINDLIN R D, BLEICH H H. Response of an elastic cylindrical shell to a transverse, step shock wave[J]. Journal of Applied Mechanics Transactions of the ASME, 1953, 20(2): 189-195. [57] PENG C, TRAN P. Bioinspired functionally graded gyroid sandwich panel subjected to impulsive loadings[J]. Composites Part B: Engineering, 188: 107773. [58] WANG H, LI S, LIU Z, et al. Investigation on the dynamic response of circular sandwich panels with the bio-inspired gradient core[J]. Thin-Walled Structures, 2020, 149: 106667. [59] MORI L F, QUEHEILLALT D T, WADLEY H, et al. Deformation and failure modes of i-core sandwich structures subjected to underwater impulsive loads[J]. Experimental Mechanics, 2009, 49(2): 257-275. [60] ZHOU T, CHENG Y, ZHAO Y, et al. Experimental investigation on the performance of PVC foam core sandwich panels subjected to contact underwater explosion[J]. Composite Structures, 2020, 235:111796. [61] RAJENDRAN R, NARASIMHAN K. Linear elastic shock response of plane plates subjected to underwater explosion[J]. International Journal of Impact Engineering, 2001, 25(5): 493-506. [62] RAMAJEYATHILAGAM K, VENDHAN C P, BHUJANGA R V. Non-linear transient dynamic response of rectangular plates under shock loading[J]. International Journal of Impact Engineering, 2000, 24(10): 999-1015. [63] 夏冰寒, 王金相, 周楠, 等. 柱状装药预制破片缩比战斗部爆炸冲击波和破片的作用时序[J]. 高压物理学报, 2020, 34(1): 95-101. [64] MOXNES J F, PRYTZ A K, FRØYLAND Ø, et al. Experimental and numerical study of the fragmentation of expanding warhead casings by using different numerical codes and solution techniques[J]. Defence Technology, 2014, 10(2): 161-176. [65] LEPPÄNEN J. Experiments and numerical analyses of blast and fragment impacts on concrete[J]. International Journal of Impact Engineering, 2005, 31(7): 843-860. [66] RAKVÄG K, UNDERWOOD N, SCHLEYER G, et al. Transient pressure loading of clamped metallic plates with pre-formed holes[J]. International Journal of Impact Engineering, 2013, 53: 44-55. [67] 张成亮, 朱锡, 侯海量, 等. 爆炸冲击波与高速破片对夹层结构的联合毁伤效应试验研究[J]. 振动与冲击, 2014, 33(15): 184-188. [68] 叶龙学, 周云波, 陶晓晓, 等. 冲击波与破片联合作用下蜂窝夹层板毁伤研究[J]. 兵器装备工程学报, 2021, 42(5): 60-66. [69] 王孟鑫, 陈睿颖, 王金相. 破片与冲击波联合作用下多孔泡沫铝夹芯复合材料板的防护性能[J]. 兵工学报, 2021, 42(5): 1041-1052. [70] 郭淳, 郭尚生, 钱建平, 等. 多破片对柱壳装药冲击起爆速度阈值的数值模拟研究[J]. 爆炸与冲击, 2020, 40(6): 24-32. [71] 赵洪志, 张建, 梁振刚, 等. 预制破片杀爆战斗部威力准确评估研究[J]. 计算机仿真, 2020(1): 15-21. [72] 祝小龙. 多连拱形迎爆面对结构抗爆效果的影响[J]. 科技资讯, 2020,18(1): 35-40. [73] 侯海量, 张成亮, 李茂, 等. 冲击波和高速破片联合作用下夹芯复合舱壁结构的毁伤特性[J]. 爆炸与冲击, 2015, 35(1): 116-123. [74] 李哲. 冲击波和破片群联合作用下高强聚乙烯/泡沫铝/碳化硅陶瓷夹芯复合结构防护机理研究[D]. 武汉: 华中科技大学,2020. [75] CHENG Y, ZHOU T, WANG H, et al. Numerical investigation onthe dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading[J]. Journal of Sandwich Structures & Materials, 2019, 21(3): 838-864. [76] 赵著杰, 侯海量, 李典. 填充多胞元抗冲击波防护结构动力学特性及防护性能研究进展[J]. 中国舰船研究, 2021, 16(3): 96-111. [77] 秦庆华, 艾伟龙, 张建勋. 孔结构金属复合夹芯板抗爆炸冲击响应及吸能特性研究[J]. 计算力学学, 2019, 36(4): 491-497. [78] 池海. 抗冲击波聚脲装甲结构设计方法研究[D]. 太原: 中北大学, 2020. [79] 赵鹏铎, 张鹏, 张磊, 等. 聚脲涂覆钢板结构抗爆性能试验研究[J]. 北京理工大学学报, 2018, 38(2): 118-123. [80] 戴平仁. 聚脲弹性体喷涂加固复合结构抗爆性能研究[D]. 南京: 南京理工大学, 2018. |