[1] 陈汝训. 纤维缠绕气瓶设计分析[J]. 固体火箭技术, 2008, 31(6): 625-628. [2] 张天平, 杨福全, 王小永, 等. 钛内衬碳纤维缠绕氦气瓶的疲劳寿命和可靠度验证[J]. 中国空间科学技术, 2007, 27(1): 41-46. [3] 林松, 罗明, 王俊锋, 等. 复合材料气瓶铝内衬缺陷对疲劳及爆破性能的影响[J]. 宇航材料工艺, 2013, 43(4): 70-74. [4] 陈旭, 高庆, 孙训方, 等. 非比例载荷下多轴低周疲劳研究最新进展[J]. 力学进展, 1997, 27(3): 313-325. [5] 时新红, 张建宇, 鲍蕊, 等. 材料多轴高低周疲劳失效准则的研究进展[J]. 机械强度, 2008, 30(3): 515-521. [6] 赵勇铭. 多轴疲劳寿命模型及疲劳试验谱编制方法研究[D]. 南京: 南京航空航天大学, 2009. [7] 陈传尧. 疲劳与断裂[M]. 武汉: 华中科技大学出版社, 2002: 82. [8] Liberting G Z. Short-life fatigue under combined stresses[J]. Journal of Strain Analysis for Engineering Design, 1967, 2(1): 91-95. [9] Sines G, Ohgi G. Fatigue Criteria Under Combined Stresses or Strains[J]. Journal of Engineering Materials & Technology, 1981, 103(2):82-90. [10] Andrews J M H, Ellison E G. A testing rig for cycling at high biaxial strains[J]. Journal of Strain Analysis for Engineering Design, 1973, 8(8): 168-175. [11] Lefebvre D F. Hydrostatic effect on the life prediction in biaxial low-cycle fatigue[C]//Proc. 2nd Int. Conf. on Multiaxial Fatigue.1985. [12] 尚德广, 王德俊. 多轴疲劳强度[M]. 北京: 科学出版社, 2007. [13] Morrow J D. Cyclic plastic strain energy and fatigue of metals[J]. ASTM STP 378, 1965: 45-87. [14] 张巧丽, 陈旭. 多轴非比例载荷下低周疲劳寿命估算方法[J]. 机械强度, 2004, 26(1): 76-79. [15] Brown M W, Miller K J. A theory for fatigue failure under multiaxial stress-strain conditions[J]. Proceedings of the Institution of Mechanical Engineers, 1973, 187(1): 745-755. [16] Lohr R D, Ellison E G. A simple theory for low cycle multiaxial fatigue [J].Fatigue & Fracture of Engineering Materials & Structures, 1980, 3(3):1-17. [17] Bannantine J A, Socie D F. A variable amplitude multiaxial fatigue life prediction methods[C]. ICBMFF3, 2013. [18] Smith K N, Topper T H, Watson P. A stress-strain function for the fatigue of metals (Stress-strain function for metal fatigue including mean stress effect)[J]. Journal of materials, 1970(5): 767-778. [19] FatemiA, Socie D F. A critical plane approach to multiaxial fatigue damage Including out-of-Phase Loading[J]. Fatigue & Fracture of Engineering Materials & Structures, 1988, 11(3): 149-165. [20] Wang C H, Brown M W. Life prediction techniques for variable amplitude multiaxial fatigue-part 1: theories[J]. Journal of Engineering Materials and Technology, 1996, 118(3): 367-370. [21] Socie D, Marquis G. Multiaxial fatigue[J]. Warrendale, PA: Society of Automotive Engineers, 1999, 502: 1999. [22] Sum W S, Williams E J, Leen S B. Finite element, critical-plane, fatigue life prediction of simple and complex contact configurations[J]. International Journal of Fatigue, 2005, 27(4): 403-416. [23] Kandil F A, Brown M W, Miller K J. Biaxial low-cycle fatigue of 316 stainless steel of elevated temperature[J]. The Metals Society, 1982, 280: 203-210. [24] Wang Y Y, Yao W X. Evaluation and comparison of several multiaxial fatigue criteria[J]. International Journal of Fatigue, 2004, 26(1):17-25. [25] Itoh T, Nakata T, Sakane M, et al. Nonproportional low cycle fatigue of 6061 aluminum alloy under 14 strain paths[J]. European Structural Integrity Society, 1999, 25: 41-54. [26] 王英玉, 姚卫星. 材料多轴疲劳破坏准则回顾[J]. 机械强度, 2003, 25(3): 246-250. [27] Kabir M Z. Finite element analysis of composite pressure vessels with a load sharing metallic liner[J]. Composite Structures, 2000, 49(3):247-255. |